57 resultados para PARTIAL-WAVE
Resumo:
We describe the classical and quantum two-dimensional nonlinear dynamics of large blue-detuned evanescent-wave guiding cold atoms in hollow fiber. We show that chaotic dynamics exists for classic dynamics, when the intensity of the beam is periodically modulated. The two-dimensional distributions of atoms in (x,y) plane are simulated. We show that the atoms will accumulate on several annular regions when the system enters a regime of global chaos. Our simulation shows that, when the atomic flux is very small, a similar distribution will be obtained if we detect the atomic distribution once each the modulation period and integrate the signals. For quantum dynamics, quantum collapses, and revivals appear. For periodically modulated optical potential, the variance of atomic position will be suppressed compared to the no modulation case. The atomic angular momentum will influence the evolution of wave function in two-dimensional quantum system of hollow fiber.
Resumo:
The action of water waves moving over a porous seabed drives a seepage flux into and out of the marine sediments. The volume of fluid exchange per wave cycle may affect the rate of contaminant transport in the sediments. In this paper, the dynamic response of the seabed to ocean waves is treated analytically on the basis of pore-elastic theory applied to a porous seabed. The seabed is modelled as a semi-infinite, isotropic, homogeneous material. Most previous investigations on the wave-seabed interaction problem have assumed quasi-static conditions within the seabed, although dynamic behaviour often occurs in natural environments. Furthermore, wave pressures used in the previous approaches were obtained from conventional ocean wave theories: which are based on the assumption of an impermeable rigid seabed. By introducing a complex wave number, we derive a new wave dispersion equation, which includes the seabed characteristics (such as soil permeability, shear modulus, etc.). Based on the new closed-form analytical solution, the relative differences of the wave-induced seabed response under dynamic and quasi-static conditions are examined. The effects of wave and soil parameters on the seepage flux per wave cycle are also discussed in detail. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Cold rubidium atoms are subjected to an amplitude-modulated far-detuned standing wave of light to form a quantum-driven pendulum. Here we discuss the dynamics of these atoms. Phase space resonances and chaotic transients of the system exhibit dynamics which can be useful in many atom optics applications as they can be utilized as means for phase space state preparation. We explain the occurrence of distinct peaks in the atomic momentum distribution, analyse them in detail and give evidence for the importance of the system for quantum chaos and decoherence studies.
Resumo:
Considerable effort has been devoted to quantifying the wave-induced soil response in a porous seabed in the last few decades. Most previous investigations have focused on the analysis of pore pressure and effective stresses within isotropic sediments, despite strong evidence of anisotropic soil behaviour reported in the literature. Furthermore, the seepage flux, which is important in the context of contaminant transport, has not been examined. In this paper, we focus on water wave-driven seepage in anisotropic marine sediments of finite thickness. The numerical results predict that the effects of hydraulic anisotropy and anisotropic soil behaviour on the wave-driven seepage in marine sediment are significant. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
Shear deformation of fault gouge or other particulate materials often results in observed strain localization, or more precisely, the localization of measured deformation gradients. In conventional elastic materials the strain localization cannot take place therefore this phenomenon is attributed to special types of non-elastic constitutive behaviour. For particulate materials however the Cosserat continuum which takes care of microrotations independent of displacements is a more appropriate model. In elastic Cosserat continuum the localization in displacement gradients is possible under some combinations of the generalized Cosserat elastic moduli. The same combinations of parameters also correspond to a considerable dispersion in shear wave propagation which can be used for independent experimental verification of the proposed mechanism of apparent strain localization in fault gouge.
Resumo:
Background: Familial partial epilepsy with variable foci (FPEVF) is an autosomal dominant syndrome characterized by partial seizures originating from different brain regions in different family members in the absence of detectable structural abnormalities. A gene for FPEVF was mapped to chromosome 22q12 in two distantly related French-Canadian families. Methods: We describe the clinical features and performed a linkage analysis in a Spanish kindred and in a third French-Canadian family distantly related to the original pedigrees. Results: Onset of seizures was typically in middle childhood, and attacks were usually easy to control. Seizure semiology varied among family members but was constant for each individual. In some, a pattern of nocturnal frontal lobe seizures led to consideration of the diagnosis of autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). The Spanish family was mapped to chromosome 22q (multipoint lod score, 3.4), and the new French-Canadian family had a multipoint lod score of 2.97 and shared the haplotype of the original French-Canadian families. Conclusions: Identification of the various forms of familial partial epilepsy is challenging, particularly in small families, in which insufficient individuals exist to identify a specific pattern. We provide clinical guidelines for this task, which will eventually be supplanted by specific molecular diagnosis. We confirmed linkage of FPEVF to chromosome 22q 12 and redefined the region to a 5.2-Mb segment of DNA.
Resumo:
A robust semi-implicit central partial difference algorithm for the numerical solution of coupled stochastic parabolic partial differential equations (PDEs) is described. This can be used for calculating correlation functions of systems of interacting stochastic fields. Such field equations can arise in the description of Hamiltonian and open systems in the physics of nonlinear processes, and may include multiplicative noise sources. The algorithm can be used for studying the properties of nonlinear quantum or classical field theories. The general approach is outlined and applied to a specific example, namely the quantum statistical fluctuations of ultra-short optical pulses in chi((2)) parametric waveguides. This example uses a non-diagonal coherent state representation, and correctly predicts the sub-shot noise level spectral fluctuations observed in homodyne detection measurements. It is expected that the methods used wilt be applicable for higher-order correlation functions and other physical problems as well. A stochastic differencing technique for reducing sampling errors is also introduced. This involves solving nonlinear stochastic parabolic PDEs in combination with a reference process, which uses the Wigner representation in the example presented here. A computer implementation on MIMD parallel architectures is discussed. (C) 1997 Academic Press.
Resumo:
High-frequency beach water table fluctuations due to wave run-up and rundown have been observed in the field [Waddell, 1976]. Such fluctuations affect the infiltration/exfiltration process across the beach face and the interstitial oxygenation process in the beach ecosystem. Accurate representation of high-frequency water table fluctuations is of importance in the modeling of (1) the interaction between seawater and groundwater, more important, the effects on swash sediment transport and (2) the biological activities in the beach ecosystem. Capillarity effects provide a mechanism for high-frequency water table fluctuations. Previous modeling approaches adopted the assumption of saturated flow only and failed to predict the propagation of high-frequency fluctuations in the aquifer. In this paper we develop a modified kinematic boundary condition (kbc) for the water table which incorporates capillarity effects. The application of this kbc in a boundary element model enables the simulation of high-frequency water table fluctuations due to wave run-up. Numerical tests were carried out for a rectangular domain with small-amplitude oscillations; the behavior of water table responses was found to be similar to that predicted by an analytical solution based on the one-dimensional Boussinesq equation. The model was also applied to simulate the water table response to wave run-up on a doping beach. The results showed similar features of water table fluctuations observed in the field. In particular, these fluctuations are standing wave-like with the amplitude becoming increasingly damped inland. We conclude that the modified kbc presented here is a reasonable approximation of capillarity effects on beach water table fluctuations. However, further model validation is necessary before the model can confidently be used to simulate high-frequency water table fluctuations due to wave run-up.
Resumo:
is study examined the social adaptation of children with mild intellectual disability who were either (a) partially integrated into regular primary school classes, or (b) full-time in separate classes, All of the children were integrated in sport and play activities with the whole school. Consistent with previous research, children with intellectual disability were less socially accepted than were a matched group of control children. Children in partially integrated classes received more play nominations than those in separate classes, brit there was no greater acceptance as a best friend. On teachers' reports, disabled children had higher levels of inappropriate social behaviours, but there was no significant difference in appropriate behaviours. Self-assessments by integrated children were more negative than those by children in separate classes, and their peer-relationship satisfaction was lower. Ratings by disabled children of their satisfaction with peer relationships were associated with ratings of appropriate social skills by themselves and their teachers, and with self-ratings of negative behaviour. The study confirmed that partial integration can have negative consequences for children with an intellectual disability.
Resumo:
1. Evidence for a 'putative beta(4)-adrenoceptor' originated over 20 years ago when cardiostimulant effects were observed to nonconventional partial agonists, These agonists were originally described as beta(1)- and beta(2)-adrenoceptor antagonists; however, they cause cardiostimulant effects at much higher concentrations than those required to block beta(1)- and beta(2)-adrenoceptors. Cardiostimulant effects of non-conventional partial agonists have been observed in mouse, rat, guinea-pig, cat, ferret and human heart tissues, 2. The receptor is expressed in several heart regions, including the sinoatrial node, atrium and ventricle, 3. The receptor is resistant to blockade by most antagonists that possess high affinity for beta(1)- and beta(2)- adrenoceptors, but is blocked with moderate affinity by (-)-bupranolol and CGP 20712A. 4. The receptor is pharmacologically distinct from the beta(3)-adrenoceptor. Micromolar concentrations of beta(3)-adrenoceptor agonists have no agonist or blocking activity, The receptor is also resistant to blockade by a beta(3)-adrenoceptor-selective antagonist. 5. The receptor mediates increases in cAMP levels and cAMP-dependent protein kinase (PK) A activity in cardiac tissues. Phosphodiesterase inhibition potentiates the positive chronotropic and inotropic effects of non-conventional partial agonists. 6. The receptor mediates hastening of atrial and ventricular relaxation, which is consistent with involvement of a cAMP-dependent pathway. 7. The non-conventional partial agonist (-)-[H-3]-CGP 12177A labels the cardiac putative beta(4)-adrenoceptor, Non-conventional partial agonists compete for binding with affinities that are closely similar to their agonist potencies, Catecholamines compete for binding in a stereoselective manner with a rank order of affinity of (-)-R0363 > (-)-isoprenaline > (-)-noradrenaline greater than or equal to (-)-adrenaline much greater than (-)-isoprenaline, suggesting that catecholamines can interact with the receptor. 8. The putative beta(4)-adrenoceptor appears to be coupled to the G(s)-adenylyl cyclase system, which could serve as a guide to its future cloning, Activation of the receptor may plausibly improve diastolic function but could also mediate arrhythmias.
Resumo:
We have developed a sensitive resonant four-wave mixing technique based on two-photon parametric four-wave mixing with the addition of a phase matched ''seeder'' field. Generation of the seeder field via the same four-wave mixing process in a high pressure cell enables automatic phase matching to be achieved in a low pressure sample cell. This arrangement facilitates sensitive detection of complex molecular spectra by simply tuning the pump laser. We demonstrate the technique with the detection of nitric oxide down to concentrations more than 4 orders of magnitude below the capability of parametric four-wave mixing alone, with an estimated detection threshold of 10(12) molecules/cm(3).