52 resultados para Nuclear staining
Resumo:
The unactivated steroid receptors are chaperoned into a conformation that is optimal for binding hormone by a number of heat shock proteins, including Hsp90, Hsp70, Hsp40, and the immunophilin, FKBP52 (Hsp56). Together with its partner cochaperones, cyclophilin 40 (CyP40) and FKBP51, FKBP52 belongs to a distinct group of structurally related immunophilins that modulate steroid receptor function through their association with Hsp90. Due to the structural similarity between the component immunophilins, FKBP52 and cyclophilin 40, we decided to investigate whether CyP40 is also a heat shock protein. Exposure of MCF-7 breast cancer cells to elevated temperatures (42 degreesC for 3 hours) resulted in a 75-fold increase in CyP40 mRNA levels, but no corresponding increase in CyP40 protein expression, even after 7 hours of heat stress. The use of cycloheximide to inhibit protein synthesis revealed that in comparison to MCF-7 cells cultured at 37 degreesC, those exposed to heat stress (42 degreesC for 3 hours) displayed an elevated rate of degradation of both CyP40 and FKBP52 proteins. Concomitantly, the half-life of the CyP40 protein was reduced from more than 24 hours to just over 8 hours following heat shock. As no alteration in CyP40 protein levels occurred in cells exposed to heat shock, an elevated rate of degradation would imply that CyP40 protein was synthesized at an increased rate. hence the designation of human CyP40 as a heat shock protein. Application of heat stress elicited a marked redistribution of CyP40 protein in MCF-7 cells from a predominantly nucleolar localization, with some nuclear and cytoplasmic staining, to a pattern characterized by a pronounced nuclear accumulation of CyP40, with no distinguishable nucleolar staining. This increase in nuclear CyP40 possibly resulted from a redistribution of cytoplasmic and nucleolar CyP40, as no net increase in CyP40 expression levels occurred in response to stress. Exposure of MCF-7 cells to actinomycin D for 4 hours resulted in the translocation of the nucleolar marker protein, B23, from the nucleolus, with only a small reduction in nucleolar CyP40 levels. Under normal growth conditions, MCF-7 cells exhibited an apparent colocalization of CyP40 and FKBP52 within the nucleolus.
Resumo:
The cholinergic system is thought to play an important role in hippocampal-dependent learning and memory. However, the mechanism of action of the cholinergic system in these actions in not well understood. Here we examined the effect of muscarinic receptor stimulation in hippocampal CA1 pyramidal neurons using whole-cell recordings in acute brain slices coupled with high-speed imaging of intracellular calcium. Activation of muscarinic acetylcholine receptors by synaptic stimulation of cholinergic afferents or application of muscarinic agonist in CA1 pyramidal neurons evoked a focal rise in free calcium in the apical dendrite that propagated as a wave into the soma and invaded the nucleus. The calcium rise to a single action potential was reduced during muscarinic stimulation. Conversely, the calcium rise during trains of action potentials was enhanced during muscarinic stimulation. The enhancement of free intracellular calcium was most pronounced in the soma and nuclear regions. In many cases, the calcium rise was distinguished by a clear inflection in the rising phase of the calcium transient, indicative of a regenerative response. Both calcium waves and the amplification of action potential-induced calcium transients were blocked the emptying of intracellular calcium stores or by antagonism of inositol 1,4,5-trisphosphate receptors with heparin or caffeine. Ryanodine receptors were not essential for the calcium waves or enhancement of calcium responses. Because rises in nuclear calcium are known to initiate the transcription of novel genes, we suggest that these actions of cholinergic stimulation may underlie its effects on learning and memory.
Resumo:
Scale insects (Hemiptera: Sternorrhyncha: Coccoidea) are a speciose and morphologically specialized group of plant-feeding bugs in which evolutionary relationships and thus higher classification are controversial. Sequences derived from nuclear small-subunit ribosomal DNA were used to generate a preliminary molecular phylogeny for the Coccoidea based on 39 species representing 14 putative families. Monophyly of the archaeococcoids (comprising Ortheziidae, Margarodidae sensu lato, and Phenacoleachia) was equivocal, whereas monophyly of the neococcoids was supported. Putoidae, represented by Puto yuccae, was found to be outside the remainder of the neococcoid clade. These data are consistent with a single origin (in the ancestor of the neococcoid clade) of a chromosome system involving paternal genome elimination in males. Pseudococcidae (mealybugs) appear to be sister to the rest of the neococcoids and there are indications that Coccidae (soft scales) and Kerriidae (lac scales) are sister taxa. The Eriococcidae (felt scales) was not recovered as a monophyletic group and the eriococcid genus Eriococcus sensu lato was polyphyletic. (C) 2002 Elsevier Science (USA). All rights reserved.
Resumo:
Myb-binding protein 1a (Mybbp1a) is a novel nuclear protein localized predominantly, but not exclusively, in nucleoli. Although initially isolated as a c-Myb interacting protein, Mybbp1a is expressed ubiquitously, associates with a number of different transcription factors, and may play a role in both RNA polymerase I- and II-mediated transcriptional regulation. However, its precise function remains unclear. In this study we show that Mybbp1a is a nucleocytoplasmic shuttling protein and investigate the mechanisms responsible for both nuclear import and export. The carboxyl terminus of Mybbp1a, which contains seven short basic amino acid repeat sequences, is responsible for both nuclear and nucleolar localization, and this activity can be transferred to a heterologous protein. Deletion mapping demonstrated that these repeat sequences appear to act incrementally, with successive deletions resulting in a corresponding increase in the proportion of protein localized in the cytoplasm. Glutathione S-transferase pulldown experiments showed that the nuclear receptor importin-alpha/beta mediates Mybbp1a nuclear import. Interspecies heterokaryons were used to demonstrate that Mybbp1a was capable of shuttling between the nucleus and the cytoplasm. Deletion analysis and in vivo export studies using a heterologous assay system identified several nuclear export sequences which facilitate Mybbp1a nuclear export of Mybbp1a by CRM1-dependent and -independent pathways. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
Fragile sites appear visually as nonstaining gaps on chromosomes that are inducible by specific cell culture conditions. Expansion of CGG/ CCG repeats has been shown to be the molecular basis of all five folate-sensitive fragile sites characterized molecularly so far, i.e., FRAXA, FRAXE, FRAXF, FRA11B, and FRA16A. In the present study we have refined the localization of the FRA10A folate-sensitive fragile site by fluorescence in situ hybridization. Sequence analysis of a BAC clone spanning FRA10A identified a single, imperfect, but polymorphic CGG repeat that is part of a CpG island in the 5'UTR of a novel gene named FRA10ACl. The number of CGG repeats varied in the population from 8 to 13. Expansions exceeding 200 repeat units were methylated in all FRA10A fragile site carriers tested. The FRA10ACl gene consists of 19 exons and is transcribed in the centromeric direction from the FRA10A repeat. The major transcript of similar to 1450 nt is ubiquitously expressed and codes for a highly conserved protein, FRA10ACl, of unknown function. Several splice variants leading to alternative 3' ends were identified (particularly in testis). These give rise to FRA10ACl proteins with altered COOH-termini. Immunofluorescence analysis of full-length, recombinant EGFP-tagged FRA10ACl protein showed that it was present exclusively in the nucleoplasm. We show that the expression of FRA10A, in parallel to the other cloned folate-sensitive fragile sites, is caused by an expansion and subsequent methylation of an unstable CGG trinucleotide repeat. Taking advantage of three cSNPs within the FRA10ACl gene we demonstrate that one allele of the gene is not transcribed in a FRA10A carrier. Our data also suggest that in the heterozygous state FRA10A is likely a benign folate-sensitive fragile site. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
N,N-dimethyl-pyrrolidinium iodide has been investigated using differential scanning calorimetry, nuclear magnetic resonance (NMR) spectroscopy, second moment calculations, and impedance spectroscopy. This pyrrolidinium salt exhibits two solid-solid phase transitions, one at 373 K having an entropy change, Delta S, of 38 J mol(-1) K-1 and one at 478 K having Delta S of 5.7 J mol(-1) K-1. The second moment calculations relate the lower temperature transition to a homogenization of the sample in terms of the mobility of the cations, while the high temperature phase transition is within the temperature region of isotropic tumbling of the cations. At higher temperatures a further decrease in the H-1 NMR linewidth is observed which is suggested to be due to diffusion of the cations. (C) 2005 American Institute of Physics.
Resumo:
H-1 NMR spectra of the thyroid hormone thyroxine recorded at low temperature and high field show splitting into two peaks of the resonance due to the H2,6 protons of the inner (tyrosyl) ring. A single resonance is observed in 600 MHz spectra at temperatures above 185 K. An analysis of the line shape as a function of temperature shows that the coalescence phenomenon is due to an exchange process with a barrier of 37 kJ mol(-1). This is identical to the barrier for coalescence of the H2',6' protons of the outer (phenolic) ring reported previously for the thyroid hormones and their analogues. It is proposed that the separate peaks at low temperature are due to resonances for H2,6 in cisoid and transoid conformers which are populated in approximately equal populations. These two peaks are averaged resonances for the individual H2 and H6 protons. Conversion of cisoid to transoid forms can occur via rotation of either the alanyl side chain or the outer ring, from one face of the inner ring to the other. It is proposed that the latter process is the one responsible for the observed coalescence phenomenon. The barrier to rotation of the alanyl side chain is greater than or equal to 37 kJ mol(-1), which is significantly larger than has previously been reported for Csp(2)-Csp(3) bonds in other Ph-CH2-X systems. The recent crystal structure of a hormone agonist bound to the ligand-binding domain of the rat thyroid hormone receptor (Wagner et al. Nature 1995, 378, 690-697) shows the transoid form to be the bound conformation. The significant energy barrier to cisoid/transoid interconversion determined in the current study combined with the tight fit of the hormone to its receptor suggests that interconversion between the forms cannot occur at the receptor site but that selection for the preferred bound form occurs from the 50% population of the transoid form in solution.