30 resultados para Northwestern Hawaiian Islands Coral Reef Ecosystem Reserve (Hawaii)
Resumo:
The somatic growth dynamics of green turtles ( Chelonia mydas) resident in five separate foraging grounds within the Hawaiian Archipelago were assessed using a robust non-parametric regression modelling approach. The foraging grounds range from coral reef habitats at the north-western end of the archipelago, to coastal habitats around the main islands at the southeastern end of the archipelago. Pelagic juveniles recruit to these neritic foraging grounds from ca. 35 cm SCL or 5 kg ( similar to 6 years of age), but grow at foraging-ground-specific rates, which results in quite different size- and age-specific growth rate functions. Growth rates were estimated for the five populations as change in straight carapace length ( cm SCL year) 1) and, for two of the populations, also as change in body mass ( kg year) 1). Expected growth rates varied from ca. 0 - 2.5 cm SCL year) 1, depending on the foraging-ground population, which is indicative of slow growth and decades to sexual maturity, since expected size of first-time nesters is greater than or equal to 80 cm SCL. The expected size- specific growth rate functions for four populations sampled in the southeastern archipelago displayed a non-monotonic function, with an immature growth spurt at ca. 50 - 53 cm SCL ( similar to 18 - 23 kg) or ca. 13 - 19 years of age. The growth spurt for the Midway atoll population in the northwestern archipelago occurs at a much larger size ( ca. 65 cm SCL or 36 kg), because of slower immature growth rates that might be due to a limited food stock and cooler sea surface temperature. Expected age-at-maturity was estimated to be ca. 35 - 40 years for the four populations sampled at the south-eastern end of the archipelago, but it might well be > 50 years for the Midway population. The Hawaiian stock comprises mainly the same mtDNA haplotype, with no differences in mtDNA stock composition between foraging-ground populations, so that the geographic variability in somatic growth rates within the archipelago is more likely due to local environmental factors rather than genetic factors. Significant temporal variability was also evident, with expected growth rates declining over the last 10 - 20 years, while green turtle abundance within the archipelago has increased significantly since the mid-1970s. This inverse relationship between somatic growth rates and population abundance suggests a density-dependent effect on somatic growth dynamics that has also been reported recently for a Caribbean green turtle stock. The Hawaiian green turtle stock is characterised by slow growth rates displaying significant spatial and temporal variation and an immature growth spurt. This is consistent with similar findings for a Great Barrier Reef green turtle stock that also comprises many foraging-ground populations spanning a wide geographic range.
Resumo:
Coral reefs are the most diverse marine ecosystem and embrace possibly millions of plant, animal and protist species. Mutualistic symbioses are a fundamental feature of coral reefs that have been used to explain their structure, biodiversity and existence. Complex inter-relationships between hosts, habitats and symbionts belie closely coupled nutrient and community dynamics that create the circumstances for something from nothing (or the oasis in a nutrient desert). The flip side of these dynamics is a close dependency between species, which results in a series of non-linear relationships as conditions change. These responses are being highlighted as anthropogenic influences increase across the world's tropical and subtropical coastlines. Caribbean as well as Indo-Pacific coral populations are now in a serious decline in many parts of the world. This has resulted in a significant reorganization of how coral reef ecosystems function. Among the spectra of changes brought about by humans is rapid climate change. Mass coral bleaching - the loss of the dinoflagellate symbionts from reef-building corals - and mortality has affected the world's coral reefs with increasing frequency and intensity since the late 1970s. Mass bleaching events, which often cover thousands of square kilometres of coral reefs, are triggered by small increases (+1-3degreesC) in water temperature. These increases in sea temperature are often seen during warm phase weather conditions (e.g. ENSO) and are increasing in size and magnitude. The loss of living coral cover (e.g. 16% globally in 1998, an exceptionally warm year) is resulting in an as yet unspecified reduction in the abundance of a myriad of other species. Projections from general circulation models (GCM) used to project changes in global temperature indicate that conditions even under the mildest greenhouse gas emission scenarios may exceed the thermal tolerances of most reef-building coral communities. Research must now explore key issues such as the extent to which the thermal tolerances of corals and their symbionts are dynamic if bleaching and disease are linked; how the loss of high densities of reef-building coral will affect other dependent species; and, how the loss of coral populations will affect the millions of people globally who depend on coral reefs for their daily survival.
Resumo:
A detailed ecological, micro-structural and skeletal Sr/Ca study of a 3.42 m thick Goniopora reef profile from an emerged Holocene reef terrace at the northern South China Sea reveals at least nine abrupt massive Goniopora stress and mortality events occurred in winter during the 7.0-7.5 thousand calendar years before present (cal. ka BP) (within the Holocene climatic optimum). Whilst calculated Sr/Ca-SST (sea surface temperature) maxima during this period are comparable to those in the 1990s, Sr/Ca-SST minima are significantly lower, probably due to stronger winter monsoons. Such generally cooler winters, superimposed by further exceptional winter cooling on inter-annual to decadal scales, may have caused stress and mortality of the corals about every 50 years. Sea level rose by similar to 3.42 m during this period, with present sea-level reached at similar to 7.3 ka BP and a sea-level highstand of at least similar to 1.8 m occurred at similar to 7.0 ka. The results show that it took about 20-25 years for a killed Goniopora coral reef to recover. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Recent work suggests the Montastraea annularis species complex consists of at least three species, which can be distinguished qualitatively in the field using features related to colony growth (e.g. overall growth form. bumpiness, growth along the colony edge). However, when whole colonies are not available and surfaces are eroded, identification becomes problematic when relying on such characteristics. Characters based on internal skeletal structures are less prone to loss due to taphonomic processes. Previous work has shown that internal corallite architectural features measured in transverse thin sections can be used to distinguish species. To determine whether internal colony-level features measured on X-radiographs can be used. eight characters related to corallite budding and accretionary growth were measured on specimens representing three modern members of the M. annularis species complex (M. annularis, M. flaveolata and M. franksi), as well as two fossil forms (columnar and organ-pipe). All eight characters showed significant differences among species. Discriminant function analysis using seven of these characters resulted in distinct species groupings In canonical scores plots and a 100% classification success for specimens from Panama. These results suggest that measurements made on X-radiographs provide a useful tool for quantitatively distinguishing members of the M. annularis complex as well as between other massive reef corals.
Resumo:
In the granitic Seychelles, many shores and beaches are fringed by coral reef flats which provide protection to shores from erosion by waves. The surfaces of these reef flats support a complex ecology. About 10 years ago their seaward zones were extensively covered by a rich coral growth, which reached approximately to mean low water level, but in 1998 this was largely killed by seawater warming. The resulting large expanses of dead coral skeletons in these locations are now disintegrating, and much of the subsequent modest recovery by new coral recruitment was set back by further mortalities. A mathematical model of wave energy reaching shorelines protected by coral reef flats has been applied to 14 Seychelles reefs. It is derived from equations which predict: (1) the raised water level, or wave set-up, on reef flats resulting from wave breaking, which depends upon offshore wave height and period, depth of still water over the reef flat and the reef crest profile, and (2) the decay of energy from reef edge to shoreline that is affected by width of reef flat, surface roughness, sea level rise and 'pseudo-sea level rise' created by increased depth resulting from disintegration of coral colonies. The model treats each reef as one entity, but because biota and zonation on reef flats are not homogenous, all reefs are divided into four zones. In each, cover by both living and dead biota was estimated for calculation of parameters, and then averaged to obtain input data for the model. All possible biological factors were taken into account, such as the ability of seagrass beds to grow upwards to match expected sea level rise, reduction in height of the reef flat in relation to sea level as zones of dead corals decay, and the observed 'rounding' of reef crests as erosion removes corals from those areas. Estimates were also made of all these factors for a time approximately a decade ago, representing a time before the mass coral mortality, and for approximately a decade in the future when the observed rapid state of dead coral colony disintegration is assumed to have reached an end point. Results of increased energy over the past decade explain observations of erosion in some sites in the Seychelles. Most importantly, it is estimated that the rise in energy reaching shores protected by fringing reefs will now accelerate more rapidly, such that the increase expected over the next decade will be approximately double than that seen over the past decade. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Waves breaking on the seaward rim of a coral reef generate a flow of water from the exposed side of the reef to the sheltered side and/or to either channels through the reef-rim or lower sections of the latter. This wave-generated flow is driven by the water surface gradient resulting from the wave set-up created by the breaking waves. This paper reviews previous approaches to modelling wave-generated flows across coral reefs and discusses the influence of reef morphology and roughness upon these flows. Laboratory measurements upon a two-dimensional horizontal reef platform with a steep reef face provide the basis for extending a previous theoretical analysis for wave set-up on a reef in the absence of a flow [Gourlay, M.R., 1996b. Wave set-up on coral reefs. 2. Set-up on reefs with various profiles. Coastal Engineering 28, 1755] to include the interaction between a unidirectional flow and the wave set-up. The laboratory model results are then used to demonstrate that there are two basic reef-top flow regimes-reef-top control and reef-rim control. Using open channel flow theory, analytical relationships are derived for the reef-top current velocity in terms of the offreef wave conditions, the reef-top water depth and the physical characteristics of the reef-top topography. The wave set-up and wave-generated flow relationships are found to predict experimental values with reasonable accuracy in most cases. The analytical relationships are used to investigate wave-generated flows into a boat harbour channel on Heron Reef in the southern Great Barrier Reef. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Conservation of U.S. coral reefs has been sidetracked by the partial implementation of management plans without clearly achievable goals. Historical ecology reveals global patterns of coral reef degradation that provide a framework for reversing reef decline with ecologically meaningful metrics for success. The authors of this Policy Forum urge action now to address multiple threats simultaneously, because the harmful effects of stressors like overfishing, pollution, poor land-use practices, and global warming are interdependent. Prompt implementation of proven, practical solutions would lead to both short- and long-term benefits, including the return of keystone species and the economic benefits they entail.
Resumo:
Coral reefs are in serious decline, and research in support of reef management objectives is urgently needed. Reef connectivity analyses have been highlighted as one of the major future research avenues necessary for implementing effective management initiatives for coral reefs. Despite the number of new molecular genetic tools and the wealth of information that is now available for population-level processes in many marine disciplines, scleractinian coral population genetic information remains surprisingly limited. Here we examine the technical problems and approaches used, address the reasons contributing to this delay in understanding, and discuss the future of coral population marker development. Considerable resources are needed to target the immediate development of an array of relevant genetic markers coupled with the rapid production of management focused data in order to help conserve our globally threatened coral reef resources.
Resumo:
The alkaloid content of Senecio madagascariensis collected from Australia and Hawaii was examined. Alkaloids were identified from the above ground whole plant (stems, leaves and flowers) by GUMS analysis and included: senecivernine, senecionine, integerrimine, senkirkine, mucronatinine, retrosine, usaramine, otosenine, acetylsenkirkine, desacetyldoronine, florosenine and doronine. Plant material collected from the Hawaiian Islands was found to be identical in pyrrolizidine alkaloid content to that from a single composite collection made from northern New South Wales, Australia. Overall, no appreciable differences in alkaloid content were found between locations, whereas variation among individual plants was evident. The average total pyrrolizidine alkaloid content varied from a low of 217 mu g/g to a high of 1990 mu g/g (dry weight basis) among the locations. Based on comparable alkaloid content and documented pyrrolizidine alkaloidosis cases from Australia, S. madagascariensis may pose a significant risk to livestock grazing heavily infested ranges on the Hawaiian Islands. (c) 2006 Elsevier Ltd. All rights reserved.