50 resultados para Nonlinear simulations
Resumo:
We describe the classical and quantum two-dimensional nonlinear dynamics of large blue-detuned evanescent-wave guiding cold atoms in hollow fiber. We show that chaotic dynamics exists for classic dynamics, when the intensity of the beam is periodically modulated. The two-dimensional distributions of atoms in (x,y) plane are simulated. We show that the atoms will accumulate on several annular regions when the system enters a regime of global chaos. Our simulation shows that, when the atomic flux is very small, a similar distribution will be obtained if we detect the atomic distribution once each the modulation period and integrate the signals. For quantum dynamics, quantum collapses, and revivals appear. For periodically modulated optical potential, the variance of atomic position will be suppressed compared to the no modulation case. The atomic angular momentum will influence the evolution of wave function in two-dimensional quantum system of hollow fiber.
Resumo:
In this paper, a new v-metric based approach is proposed to design decentralized controllers for multi-unit nonlinear plants that admit a set of plant decompositions in an operating space. Similar to the gap metric approach in literature, it is shown that the operating space can also be divided into several subregions based on a v-metric indicator, and each of the subregions admits the same controller structure. A comparative case study is presented to display the advantages of proposed approach over the gap metric approach. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The finite element method is used to simulate coupled problems, which describe the related physical and chemical processes of ore body formation and mineralization, in geological and geochemical systems. The main purpose of this paper is to illustrate some simulation results for different types of modelling problems in pore-fluid saturated rock masses. The aims of the simulation results presented in this paper are: (1) getting a better understanding of the processes and mechanisms of ore body formation and mineralization in the upper crust of the Earth; (2) demonstrating the usefulness and applicability of the finite element method in dealing with a wide range of coupled problems in geological and geochemical systems; (3) qualitatively establishing a set of showcase problems, against which any numerical method and computer package can be reasonably validated. (C) 2002 Published by Elsevier Science B.V.
Resumo:
[1] The physical conditions required to provide for the tectonic stability of cratonic crust and for the relative longevity of deep cratonic lithosphere within a dynamic, convecting mantle are explored through a suite of numerical simulations. The simulations allow chemically distinct continents to reside within the upper thermal boundary layer of a thermally convecting mantle layer. A rheologic formulation, which models both brittle and ductile behavior, is incorporated to allow for plate-like behavior and the associated subduction of oceanic lithosphere. Several mechanisms that may stabilize cratons are considered. The two most often invoked mechanisms, chemical buoyancy and/or high viscosity of cratonic root material, are found to be relatively ineffective if cratons come into contact with subduction zones. High root viscosity can provide for stability and longevity but only within a thick root limit in which the thickness of chemically distinct, high-viscosity cratonic lithosphere exceeds the thickness of old oceanic lithosphere by at least a factor of 2. This end-member implies a very thick mechanical lithosphere for cratons. A high brittle yield stress for cratonic lithosphere as a whole, relative to oceanic lithosphere, is found to be an effective and robust means for providing stability and lithospheric longevity. This mode does not require exceedingly deep strength within cratons. A high yield stress for only the crustal or mantle component of the cratonic lithosphere is found to be less effective as detachment zones can then form at the crust-mantle interface which decreases the longevity potential of cratonic roots. The degree of yield stress variations between cratonic and oceanic lithosphere required for stability and longevity can be decreased if cratons are bordered by continental lithosphere that has a relatively low yield stress, i.e., mobile belts. Simulations that combine all the mechanisms can lead to crustal stability and deep root longevity for model cratons over several mantle overturn times, but the dominant stabilizing factor remains a relatively high brittle yield stress for cratonic lithosphere.
Resumo:
Simulations provide a powerful means to help gain the understanding of crustal fault system physics required to progress towards the goal of earthquake forecasting. Cellular Automata are efficient enough to probe system dynamics but their simplifications render interpretations questionable. In contrast, sophisticated elasto-dynamic models yield more convincing results but are too computationally demanding to explore phase space. To help bridge this gap, we develop a simple 2D elastodynamic model of parallel fault systems. The model is discretised onto a triangular lattice and faults are specified as split nodes along horizontal rows in the lattice. A simple numerical approach is presented for calculating the forces at medium and split nodes such that general nonlinear frictional constitutive relations can be modeled along faults. Single and multi-fault simulation examples are presented using a nonlinear frictional relation that is slip and slip-rate dependent in order to illustrate the model.
Resumo:
Quantum mechanics has been formulated in phase space, with the Wigner function as the representative of the quantum density operator, and classical mechanics has been formulated in Hilbert space, with the Groenewold operator as the representative of the classical Liouville density function. Semiclassical approximations to the quantum evolution of the Wigner function have been defined, enabling the quantum evolution to be approached from a classical starting point. Now analogous semiquantum approximations to the classical evolution of the Groenewold operator are defined, enabling the classical evolution to be approached from a quantum starting point. Simple nonlinear systems with one degree of freedom are considered, whose Hamiltonians are polynomials in the Hamiltonian of the simple harmonic oscillator. The behavior of expectation values of simple observables and of eigenvalues of the Groenewold operator are calculated numerically and compared for the various semiclassical and semiquantum approximations.
Resumo:
The technique of frequency-resolved optical gating is used to characterize the intensity and the phase of picosecond pulses after propagation through 700 m of fiber at close to the zero-dispersion wavelength. Using the frequency-resolved optical gating technique, we directly measure the severe temporal distortion resulting from the interplay between self-phase modulation and higher-order dispersion in this regime. The measured intensity and phase of the pulses after propagation are found to be in good agreement with the predictions of numerical simulations with the nonlinear Schrodinger equation. (C) 1997 Optical Society of America.
Resumo:
Classical dynamics is formulated as a Hamiltonian flow in phase space, while quantum mechanics is formulated as unitary dynamics in Hilbert space. These different formulations have made it difficult to directly compare quantum and classical nonlinear dynamics. Previous solutions have focused on computing quantities associated with a statistical ensemble such as variance or entropy. However a more diner comparison would compare classical predictions to the quantum predictions for continuous simultaneous measurement of position and momentum of a single system, in this paper we give a theory of such measurement and show that chaotic behavior in classical systems fan be reproduced by continuously measured quantum systems.