21 resultados para Nitrogen oxides (NOX) removal
Resumo:
Nitrogen loading to aquatic ecosystems from sewage is recognised worldwide as a growing problem. The use of nitrogen stable isotopes as a means of discerning sewage nitrogen in the environment has been used annually by the Ecosystem Health Monitoring Program in Moreton Bay (Australia) since 1997 when the technique was first developed. This (sewage plume mapping) technique, which measures the delta(15)N isotopic signature of the red macroalga Catenella nipae after incubation in situ, has demonstrated a large reduction in the magnitude and spatial extent of sewage nitrogen within Moreton Bay over the past 5 years. This observed reduction coincides with considerable upgrades to the nitrogen removal efficacy at several sewage treatment plants within the region. This paper describes the observed changes and evaluates whether they can be attributed to the treatment upgrades. (c) 2004 Published by Elsevier Ltd.
Resumo:
The effects of acetate and propionate on the performance of a recently proposed and characterized photosynthetic biological sulfide removal system have been investigated with a view to predicting this concept's suitability for removing sulfide from wastewater undergoing or having undergone anaerobic treatment. The concept relies on substratum-irradiated biofilms dominated by green sulfur bacteria (GSB), which are supplied with radiant energy in the band 720 - 780 nm. A model reactor was fed for 7 months with a synthetic wastewater free of volatile fatty acids (VFAs), after which time intermittent dosing of the wastewater with acetate or propionate was begun. Such dosing suppressed the areal net sulfide removal rate by similar to50%, and caused the principal net product of sulfide removal to switch from sulfate to elemental-S. Similarly suppressed values of this rate were observed when the wastewater was dosed continuously with acetate, and this rate was not significantly affected by changes in the concentration of ammonia-N in the feed. The main net product of sulfide removal was again elemental-S, which was scarcely released into the liquid, however. Sulfate reduction and sulfur reduction were observed when the light supply was interrupted and were inferred to be occurring within the irradiated biofilm. A preexisting conceptual model of the biofilm was augmented with both of these reductive processes, and this augmented model was shown to account for most of the observed effects of VFA dosing. The implications of these findings for the practicality of the technology are considered. (C) 2004 Wiley Periodicals, Inc.
Resumo:
The microbial community composition and activity was investigated in aggregates from a lab-scale bioreactor, in which nitrification, denitrification and phosphorus removal occurred simultaneously. The biomass was highly enriched for polyphosphate accumulating organisms facilitating complete removal of phosphorus from the bulk liquid; however, some inorganic nitrogen still remained at the end of the reactor cycle. This was ascribed to incomplete coupling of nitrification and denitrification causing NO3- accumulation. After 2 h of aeration, denitrification was dependent on the activity of nitrifying bacteria facilitating the formation of anoxic zones in the aggregates; hence, denitrification could not occur without simultaneous nitrification towards the end of the reactor cycle. Nitrous oxide was identified as a product of denitrification, when based on stored PHA as carbon source. This observation is of critical importance to the outlook of applying PHA-driven denitrification in activated sludge processes. (c) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
An Australian natural zeolite was collected, characterised and employed for basic dye adsorption in aqueous solution. The natural zeolite is mainly composed of clinoptiloite, quartz and mordenite and has cation-exchange capacity of 120 meq/100 g. The natural zeolite presents higher adsorption capacity for methylene blue than rhodamine B with the maximal adsorption capacity of 2.8 x 10(-5) and 7.9 x 10(-5) Mot/g at 50 degrees C for rhodamine B and methylene blue, respectively. Kinetic studies indicated that the adsorption followed the pseudo second-order kinetics and could be described as two-stage diffusion process. The adsorption isotherm could be fitted by the Langmuir and Freundlich models. Thermodynamic calculations showed that the adsorption is endothermic process with Delta H degrees at 2.0 and 8.7 kJ/mol for rhodamine B and methylene blue. It has also found that the regenerated zeolites by high-temperature calcination and Fenton oxidation showed similar adsorption capacity but lower than the fresh sample. Only 60% capacity could be recovered by the two regeneration techniques. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The recently described process of simultaneous nitrification, denitrification and phosphorus removal (SNDPR) has a great potential to save capital and operating costs for wastewater treatment plants. However, the presence of glycogen-accumulating organisms (GAOs) and the accumulation of nitrous oxide (N2O) can severely compromise the advantages of this process. In this study, these two issues were investigated using a lab-scale sequencing batch reactor performing SNDPR over a 5-month period. The reactor was highly enriched in polyphosphate-accumulating organisms (PAOs) and GAOs representing around 70% of the total microbial community. PAOs were the dominant population at all times and their abundance increased, while GAOs population decreased over the study period. Anoxic batch tests demonstrated that GAOs rather than denitrifying PAOs were responsible for denitrification. NO accumulated from denitrification and more than half of the nitrogen supplied in a reactor cycle was released into the atmosphere as NO. After mixing SNDPR sludge with other denitrifying sludge, N2O present in the bulk liquid was reduced immediately if external carbon was added. We therefore suggest that the N2O accumulation observed in the SNDPR reactor is an artefact of the low microbial diversity facilitated by the use of synthetic wastewater with only a single carbon source. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Land disposal is commonly used for urban and industrial wastewater, largely due to the high costs involved in alternative treatments or disposal systems. However, the viability of such systems depends on many factors, including the composition of the effluent water, soil type, the plant species grown, growth rate, and planting density. The objective of this study is to establish whether land disposal of nitrogen (N) rich effluent using an agroforestry system is sustainable, and determine the effect of irrigation rate and tree planting density on the N cycle and subsequent N removal. We examined systems for the sustainable disposal of a high strength industrial effluent. The challenge was to leach the salt, by using a sufficiently high rate of irrigation, while simultaneously ensuring that N did not leach from the soil profile. We describe the N balance for two plant systems irrigated with effluent, one comprising Eucalyptus tereticornis and Eucalyptus moluccana and a Rhodes grass (Chloris gayana) pasture, and the other, Rhodes grass pasture alone. Nitrogen balance was assessed from N inputs in effluent and rainfall, accumulation of N in the plant biomass, changes in soil N storage, N loss in run-off water, denitrification and N loss to the groundwater by deep-drainage. Biomass production was estimated from allometric relationships derived from yearly destructive harvesting of selected trees. The N content of that biomass was then calculated from measured N content of the various plant parts, and their mass. Approximately 300 kg N/ha/yr was assimilated into tree biomass at a planting density of 2500 tree/ha of E. moluccana. In addition to tree assimilation, pasture growth between the tree rows, which was regularly harvested, contributed substantially to N uptake. If the trees were harvested after two years of growth and grass harvested regularly, biomass removal of N by the mixed system would be about 700 kg N/ha/yr. The results of this study show that the current system of effluent disposal is not sustainable as the nitrate leaching from the soil profile far exceeds standards set out by the ANZECC guidelines. Hence additional means of N removal will need to be implemented. Biological N removal is an area that warrants further studies as it is aimed at reducing N levels in the effluent before irrigation. This will complement the current agroforestry system.