70 resultados para Ni(III)
Resumo:
Carbon formation on Ni/gamma-Al2O3 catalysts and its kinetics during methane reforming with carbon dioxide was studied in the temperature range of 500-700 degrees C using a thermogravimetric analysis technique. The activation energies of methane cracking, carbon gasification in CO2, as well as carbon deposition in CO2-CH4 reforming were obtained. The results show that the activation energy for carbon gasification is larger than that of carbon formation in methane cracking and that the activation energy of coking in CO2-CH4 reforming is also larger than that of methane decomposition to carbon. The dependencies of coking rate on partial pressures of CH4 and CO2 indicate that methane decomposition is the main route for carbon deposition. A mechanism and kinetic model for carbon deposition is proposed.
Resumo:
Ni catalysts supported on gamma-Al2O3, CeO2 and CeO2-A1(2)O(3) systems were tested for catalytic CO2 reforming of methane into synthesis gas. Ni/CeO2-Al2O3 catalysts showed much better catalytic performance than either CeO2- or gamma-Al2O3-supported Ni catalysts. CeO2 as a support for Ni catalysts produced a strong metal-support interaction (SMSI), which reduced the catalytic activity and carbon deposition. However, CeO2 had positive effect on catalytic activity, stability, and carbon suppression when used as a promoter in Ni/gamma-Al2O3 catalysts for this reaction. A weight loading of 1-5 wt% CeO2 was found to be the optimum. Ni catalysts with CeO2 promoters reduced the chemical interaction between nickel and support, resulting in an increase in reducibility and stronger dispersion of nickel. The stability and less coking on CeO2-promoted catalysts are attributed to the oxidative properties of CeO2. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
A series of Ni catalysts supported on flyash treated by various chemical methods was tested for carbon dioxide reforming of methane. Ni catalyst on the flyash treated with CaO (Ni/Ash-CaO) shows high conversion and stability, being close to those of the well-reported Ni/Al2O3 and Ni/SiO2 catalysts with conversions approaching thermodynamic equilibrium levels.
Resumo:
Carbon dioxide reforming of methane into syngas over Ni/gamma-Al2O3 catalysts was systematically studied. Effects of reaction parameters on catalytic activity and carbon deposition over Ni/gamma-Al2O3 catalysts were investigated. It is found that reduced NiA1204, metal nickel, and active species of carbon deposited were the active sites for this reaction. Carbon deposition on Ni/gamma Al2O3 varied depending on the nickel loading and reaction temperature and is the major cause of catalyst deactivation. Higher nickel loading produced more coke on the catalysts, resulting in rapid deactivation and plugging of the reactor. At 5 wt % Ni/gamma-Al2O3 catalyst exhibited high activity and much lesser magnitude of deactivation in 140 h. Characterization of carbon deposits on the catalyst surface revealed that there are two kinds of carbon species (oxidized and -C-C-) formed during the reaction and they showed different reactivities toward hydrogenation and oxidation. Kinetic studies showed that the activation energy for CO production in this reaction amounted to 80 kJ/mol and the rate of CO production could be described by a Langmuir-Hinshelwood model.
Resumo:
Previous studies have demonstrated that 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone (NIH) and several other aroylhydrazone chelators possess anti-neoplastic activity due to their ability to bind intracellular iron. In this study we have examined the structure and properties of NIH and its Fe-III complex in order to obtain further insight into its anti-tumour activity. Two tridentate NIH ligands deprotonate upon coordination to Fe-III in a meridional fashion to form a distorted octahedral, high-spin complex. Solution electrochemistry of [Fe(NIH-H)(2)](+) shows that the trivalent oxidation state is dominant over a wide potential range and that the Fe-II analogue is not a stable form of this complex. The fact that [Fe(NIH-H)(2)](+) cannot-cycle between the Fe-II and Fe-III states suggests that the production of toxic free- radical species, e.g. OH. or O2(.-),is not part of this ligand's cytotoxic action. This suggestion is supported by cell culture experiments demonstrating that the addition of Fe-III to NIH prevents its anti-proliferative effect. The chemistry of this chelator and its Fe-III complex are discussed in the context of understanding its anti-tumour activity.
Resumo:
This paper studied the influence of hydrogen and water vapour environments on the plastic behaviour in the vicinity of the crack tip for AISI 4340. Hydrogen and water vapour (at a pressure of 15 Torr) significantly increased the crack tip opening displacement. The crack tip strain distribution in 15 Torr hydrogen was significantly different to that measured in vacuum. In the presence of sufficient hydrogen, the plastic zone was larger, was elongated in the direction of crack propagation and moreover there was significant creep. These observations support the hydrogen enhanced localised plasticity model for hydrogen embrittlement in this steel. The strain distribution in the presence of water vapour also suggests that SCC in AISI 4340 occurs via the hydrogen enhanced localised plasticity mechanism. (C) 1999 Kluwer Academic Publishers.
Resumo:
The macrocyclic cobalt hexaamines [Co(trans-diammac)](3+) and [Co(cis-diammac)](3+) (diammac = 6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine) are capable of reducing the overpotential for hydrogen evolution on a mercury cathode in aqueous solution. Protons are reduced in a catalytic process involving reoxidation of the Co-II species to its parent Co-III complex. The cycle is robust at neutral pH with no decomposition of catalyst. The stability of the [Co(trans-diammac)](2+) and [Co(cis-diammac)](2+) complexes depends on the pH of the solution and the coordinating properties of the supporting electrolyte. Electrochemical studies indicate that the adsorbed Co-II complex on the surface of mercury is the active catalyst for the reduction of protons to dihydrogen.
Resumo:
Preparation of a series of specific penta- and tetra-amine derivatives of Co-III and Cr-III with a neutral leaving ligand has been carried out in order to accomplish a fine tuning of the associativeness/dissociativeness of their substitution reactions. Spontaneous aquation reactions of the neutral ligands have been studied at variable temperature and pressure. Although rate constants and thermal activation parameters show an important degree of scatter, the values determined for the activation volumes of the substitution process illustrate the mechanistic fine tuning that may be achieved for these reactions. In all cases, in the absence of important steric constraints in the molecule, electronic inductive effects seem to be the most important factor accounting for the dissociative shifts observed both for pentaamine (i.e.Delta V double dagger=+4.0 or +14.0 cm(3) mol(-1) and +5.2 or +16.5 cm(3) mol(-1) for the aquation of cis- or trans-[Co(MeNH2)(NH3)(4)(DMF)](3+) and cis- or trans-[CoL15(DMF)](3+) respectively, where L-15 represents a pentaamine macrocyclic ligand), and tetraamine systems (i.e.Delta V double dagger=+4.1 or +8.4 cm(3) mol(-1) and -10.8 or -7.4 cm(3) mol(-1) for the aquation of cis-[Co(NH3)(4)Cl(DMAC)](2+) (DMAC=dimethylacetamide) or cis-[Co(en)(2)Cl(DMAC)](2+) and cis-[Cr(NH3)(4)Cl(DMF)](2+) or cis -[Cr(en)(2)Cl(DMF)](2+)). From the results, clear evidence is obtained which indicates that, only when the situation is borderline I-a/I-d, or the steric demands are increased dramatically, dissociative shifts are observed; in all other cases electronic inductive effects seem to be dominant for such a tuning of the substitution process.
Resumo:
The effect of acidic treatments on N2O reduction over Ni catalysts supported on activated carbon was systematically studied. The catalysts were characterized by N-2 adsorption, mass titration, temperature-programmed desorption (TPD), and X-ray photoelectron spectrometry (XPS). It is found that surface chemistry plays an important role in N2O-carbon reaction catalyzed by Ni catalyst. HNO3 treatment produces more active acidic surface groups such as carboxyl and lactone, resulting in a more uniform catalyst dispersion and higher catalytic activity. However, HCl treatment decreases active acidic groups and increases the inactive groups, playing an opposite role in the catalyst dispersion and catalytic activity. A thorough discussion of the mechanism of the N2O catalytic reduction is made based upon results from isothermal reactions, temperature-programmed reactions (TPR) and characterization of catalysts. The effect of acidic treatment on pore structure is also discussed. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Catalytic reforming of methane with carbon dioxide was studied in a fixed-bed reactor using unpromoted and promoted Ni/gamma-Al2O3 catalysts. The effects of promoters, such as alkali metal oxide (Na2O), alkaline-earth metal oxides (MgO, CaO) and rare-earth metal oxides (La2O3, CeO2), on the catalytic activity and stability in terms of coking resistance and coke reactivity were systematically examined. CaO-, La2O3- and CeO2-promoted Ni/gamma-Al2O3 catalysts exhibited higher stability whereas MgO- and Na2O-promoted catalysts demonstrated lower activity and significant deactivation. Metal-oxide promoters (Na2O, MgO, La2O3, and CeO2) suppressed the carbon deposition, primarily due to the enhanced basicities of the supports and highly reactive carbon species formed during the reaction. In contrast, CaO increased the carbon deposition; however, it promoted the carbon reactivity. (C) 2000 Society of Chemical Industry.
Resumo:
The beta subunit of the Escherichia coli replicative DNA polymerase III holoenzyme is the sliding clamp that interacts with the alpha (polymerase) subunit to maintain the high processivity of the enzyme. The beta protein is a ring-shaped dimer of 40.6 kDa subunits whose structure has previously been determined at a resolution of 2.5 Angstrom [Kong et al. (1992), Cell, 69, 425-437]. Here, the construction of a new plasmid that directs overproduction of beta to very high levels and a simple procedure for large-scale purification of the protein are described. Crystals grown under slightly modified conditions diffracted to beyond 1.9 Angstrom at 100 K at a synchrotron source. The structure of the beta dimer solved at 1.85 Angstrom resolution shows some differences from that reported previously. In particular, it was possible at this resolution to identify residues that differed in position between the two subunits in the unit cell; side chains of these and some other residues were found to occupy alternate conformations. This suggests that these residues are likely to be relatively mobile in solution. Some implications of this flexibility for the function of beta are discussed.
Resumo:
For many years proof that the hypoxic nature of malignant tumours can be used to selectively target anticancer drugs has been sought. Several classes of potential redox activated anticancer drugs have been developed to take advantage of the reducing environment resulting from the hypoxia. Drug complexes with redox active metal centres as carriers have been investigated, but have largely been employed with cytotoxic drugs that require release of the drug intracellularly, complicating the design of such complexes. MMP inhibitors, a new class of anticancer drug, conversely act in the extracellular environment and we have investigated inhibitor complexes with several redox active transition metals. Marimastat is an MMP inhibitor with potent in-vitro antimetastatic activity and was recently in Phase III clinical trials for a variety of cancer types. We have synthesised a Co(II1) complex of marimastat incorporating the tetradentate ligand tpa (tris(2-methylpyridyl)amine) as a carrier ligand. The complex was structurally characterised in the solid state by single crystal X-ray diffraction, the first example of a crystal structure containing marimastat. 2D COSY and NOESY NMR spectra showed that the complex exists in two isomeric forms in solution, corresponding to the cis and trans isomers yet only crystallises in one of these forms. Biological testing of the complex in mice with 4T1.2 tumours showed interesting and unexpected outcomes. Initial results of the tumour growth inhibition study showed that a significant inhibition of growth was exhibited by the complex over the free inhibitor and the control. However, the metastatic potential of both free marimastat and the complex were higher than the control indicating likely problems with the experimental protocol. Further experiments are needed to determine the potential of such complexes as hypoxia activated prodrugs but there appears at least to be some promise.
Resumo:
The synthesis of the hexadentate ligand 2,2,9,9-tetra(methyleneamine)-4,7-dithiadecane (EtN(4)S(2)amp) is reported. The ligand is of a type in which bifurcations of the chain occur at atoms other than donor atoms. The cobalt(III) complex [Co(EtN(4)S(2)amp)](3+) (1) was isolated and characterized. The synthetic methodology also results in a number of by-products, notably 2,9,9-tris(methyleneamine)-9-methylenehydroxy-4,7-dithiadecane (Et(HO)N(3)S(2)amp) and an eleven-membered pendant arm macrocyclic ligand 6,10-dimethyl-6,10-bis(methyleneamine)-1,4-dithia-8-azaacycloundec-7- ene (dmatue). The complexes [Co(Et(HO)N(3)S(2)amp)](3+) (2), in which the alcohol is coordinated to the metal ion, and [Co(dmatue)Cl](2+) (4) were isolated and characterized. Et(HO)N(3)S(2)amp also undergoes complexation with cobalt(III) to produce two isomers endo-[Co(Et(HO) N(3)S(2)amp)Cl](2+) (endo-3) and exo-[Co(Et(HO) N(3)S(2)amp)Cl](2+) (exo-3), both with an uncoordinated alcohol group. endo- 3 has the alcohol positioned cis, and exo-3 trans, to the sixth metal coordination site. Reaction of 1 with isobutyraldehyde, paraformaldehyde and base in dimethylformamide results in the encapsulated complex [Co(1,5,5,9,13,13-hexamethyl-18,21-dithia-3,7,11,15-tetraazabicyclo[7.7.6]docosa- 3,14-diene)](ClO4)(3) . 2H(2)O ([Co(Me(6)docosadieneN(4)S(2))](3+) ( 5). All complexes have been characterized by single crystal X-ray study. The low-temperature (11 K) absorption spectrum of 1 has been measured in Nafion films with spin-allowed (1)A(1g) --> T-1(1g) and (1)A(1g) --> T-1(2g) and spin forbidden (1)A(1g) --> T-3(1g) and (1)A(1g) --> T-3(2g) bands observed. The octahedral ligand-field parameters were determined (10Dq = 22570 cm(-1), B = 551 cm(-1); C = 3500 cm(-1)). For 5 10Dq and B were determined (20580 cm(-1); 516 cm(-1), respectively) and compared with those for similar expanded cavity complexes [Co(Me(8)tricosatrieneN(6))](3+) and [Co(Me(5)tricosatrieneN(6))](3+).