25 resultados para Newtonian fluids
Resumo:
AIM: To develop a technique to estimate the volume of epithelial lining fluid (ELF) obtained during bronchoalveolar lavage (BAL) and pleural lavage (PL) in the dog, using the urea dilution method. METHODS: BAL and PL fluids were obtained by saline lavage of pulmonary and pleural cavities of nine clinically healthy mixed-breed dogs immediately after euthanasia. Cell counts in the BAL and PL fluids were measured using standard techniques. The concentration of ELF in each lavage fluid was calculated from the relative concentration of urea in plasma and in each type of lavage fluid. Cell counts in ELF were then calculated. RESULTS: There were substantially higher cell counts in ELF compared to BAL or PF fluid. However, nucleated cell counts in ELF could not be predicted from cell counts in BAL or PL fluid. CONCLUSIONS AND CLINICAL RELEVANCE: These results suggest that accurate assessment of cellular or non-cellular components in lavage fluids should include a calculation of the proportion of ELF recovered, using a method such as urea dilution.
Resumo:
Shale-normalised rare earth element and yttrium (REE + Y) patterns for siderite-jasper couples in a banded iron formation of the 3.45 Ga Panorama Formation, Warrawoona Group, eastern Pilbara Craton, display distinct positive Y and Eu anomalies and weak positive La and Gd anomalies, combined with depleted light REE relative to middle and heavy REE. Ambient seawater and hydrothermal fluids are identified as major sources of REE + Y for the BIF. In the case of siderites, strong correlations between incompatible trace elements and trace element ratios diagnostic of seawater indicate variable input from a terrigenous source (e.g. volcanic ash). We propose a volcanic caldera setting as a likely depositional environment where jasper and siderite precipitated as alternating bands in response to episodic changes in ambient water chemistry. The episodicity was either driven by fluctuations in the intensity of hydrothermal activity or changes in magma chamber activity, which in turn controlled relative sea level. In this context, precipitation of jasper probably reflects background conditions during which seawater was saturated in silica due to evaporative conditions, while siderites were deposited most likely during intermittent periods of enhanced volcanic activity when seawater was more acidic due to the release of exhalative phases (e.g. CO2). © 2005 Elsevier B.V. All rights reserved.
Resumo:
Alteration zones at the gold-rich Bajo de la Alumbrera porphyry copper deposit in northwestern Argentina are centered on several porphyritic intrusions. They are zoned from a central copper-iron sulfide and gold-mineralized potassic (biotite-K-feldspar +/- quartz) core outward to propylitic (chlorite-illite-epidote-calcite) assemblages. A mineralized intermediate argillic alteration assemblage (chlorite-illite +/- pyrite) has overprinted the potassic alteration zone across the top and sides of the deposit and is itself zoned outward into phyllic (quartzinuscovite-illite +/- pyrite) alteration. This study contributes new data to previously reported delta(18)O and delta D compositions of fluids responsible for the alteration at Bajo de la Alumbrera, and the data are used to infer likely ore-forming processes. Measured and calculated delta(18)O and delta D values of fluids (+8.3 to +10.2 and -33 to -81 parts per thousand, respectively) confirm a primary magmatic origin for the earliest potassic alteration phase. Lower temperature potassic alteration formed from magmatic fluids with lower delta D values (down to -123 parts per thousand). These depleted compositions are distinct from meteoric water and consistent with degassing and volatile exsolution of magmatic fluids derived from an underlying magma. Variability in the calculated composition of fluid associated with potassic alteration is explained in terms of phase separation (or boiling). if copper-iron sulfide deposition occurred during cooling (as proposed elsewhere), this cooling was largely a result of phase separation. Magmatic water was directly involved in the formation of overprinting intermediate argillic alteration assemblages at Bajo de la Alumbrera. Calculated delta(18)O and delta D values of fluids associated with this alteration range from +4.8 to +8.1 and -31 to -71 per mil, respectively Compositions determined for fluids associated with phyllic alteration (-0.8 to +10.2 and -31 to -119 parts per thousand) overlap with the values determined for the intermediate argillic alteration. We infer that phyllic alteration assemblages developed during two stages; the first was a high-temperature (400 degrees-300 degrees C) stage with D-depleted water (delta D = -66 to -119 parts per thousand). This compositional range may have resulted from magma degassing and/or the injection of new magmatic water into a compositionally evolved hydrothermal system. The isotopic variations also can be explained by increased fluid-rock interaction. The second stage of phyllic alteration occurred at a lower temperature (similar to 200 degrees C), and variations in the modeled isotopic compositions imply mixing of magmatic and meteoric waters. Ore deposition that occurred late in the evolution of the hydrothermal system was probably associated with further cooling of the magmatic fluid, in part caused by fluid-rock interaction and phase separation. Changing pH and/or oxygen fuoracity may have caused additional ore deposition. The ingress of meteoric water appears to postdate the bulk of mineralization and occurred as the system at Bajo de la Alumbrera waned.
Resumo:
A Monte Carlo simulation method is Used 10 study the effects of adsorption strength and topology of sites on adsorption of simple Lennard-Jones fluids in a carbon slit pore of finite length. Argon is used as a model adsorbate, while the adsorbent is modeled as a finite carbon slit pore whose two walls composed of three graphene layers with carbon atoms arranged in a hexagonal pattern. Impurities having well depth of interaction greater than that of carbon atom are assumed to be grafted onto the surface. Different topologies of the impurities; corner, centre, shelf and random topologies are studied. Adsorption isotherms of argon at 87.3 K are obtained for pore having widths of 1, 1.5 and 3 11111 using a Grand Canonical Monte Carlo simulation (GCMC). These results are compared with isotherms obtained for infinite pores. It is shown that the Surface heterogeneity affects significantly the overall adsorption isotherm, particularly the phase transition. Basically it shifts the onset of adsorption to lower pressure and the adsorption isotherms for these four impurity models are generally greater than that for finite pore. The positions of impurities on solid Surface also affect the shape of the adsorption isotherm and the phase transition. We have found that the impurities allocated at the centre of pore walls provide the greatest isotherm at low pressures. However when the pressure increases the impurities allocated along the edges of the graphene layers show the most significant effect on the adsorption isotherm. We have investigated the effect of surface heterogeneity on adsorption hysteresis loops of three models of impurity topology, it shows that the adsorption branches of these isotherms are different, while the desorption branches are quite close to each other. This suggests that the desorption branch is either the thermodynamic equilibrium branch or closer to it than the adsorption branch. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
A modified Volume-of-Fluid (VOF) numerical method is used to predict the dynamics of a liquid drop of a low viscosity dilute polymer solution, forming in air from a circular nozzle. Viscoelastic effects are represented using an Oldroyd-B model. Predicted drop shapes are compared with experimental observations. The main features, including the timing of the shape evolution and the bead-on-a-string effect, are well reproduced by the simulations. The results confirm published conclusions of the third author, that the deformation is effectively Newtonian until near the time of Newtonian pinch-off and that the elastic stress becomes large in the pinch region due to the higher extensional flow there.
Resumo:
We present results of the reconstruction of a saccharose-based activated carbon (CS1000a) using hybrid reverse Monte Carlo (HRMC) simulation, recently proposed by Opletal et al. [1]. Interaction between carbon atoms in the simulation is modeled by an environment dependent interaction potential (EDIP) [2,3]. The reconstructed structure shows predominance of sp(2) over sp bonding, while a significant proportion of sp(3) hybrid bonding is also observed. We also calculated a ring distribution and geometrical pore size distribution of the model developed. The latter is compared with that obtained from argon adsorption at 87 K using our recently proposed characterization procedure [4], the finite wall thickness (FWT) model. Further, we determine self-diffusivities of argon and nitrogen in the constructed carbon as functions of loading. It is found that while there is a maximum in the diffusivity with respect to loading, as previously observed by Pikunic et al. [5], diffusivities in the present work are 10 times larger than those obtained in the prior work, consistent with the larger pore size as well as higher porosity of the activated saccharose carbon studied here.
Resumo:
A theory is discussed of single-component transport in nanopores, recently developed by Bhatia and coworkers. The theory considers the oscillatory motion of molecules between diffuse wall collisions, arising from the fluid-wall interaction, along with superimposed viscous flow due to fluid-fluid interaction. The theory is tested against molecular dynamics simulations for hydrogen, methane, and carbon tetrafluoride flow in cylindrical nanopores in silica. Although exact at low densities, the theory performs well even at high densities, with the density dependency of the transport coefficient arising from viscous effects. Such viscous effects are reduced at high densities because of the large increase in viscosity, which explains the maximum in the transport coefficient with increase in density. Further, it is seen that in narrow pore sizes of less than two molecular diameters, where a complete monolayer cannot form on the surface, the mutual interference of molecules on opposite sides of the cross section can reduce the transport coefficient, and lead to a maximum in the transport coefficient with increasing density. The theory is also tested for the case of partially diffuse reflection and shows the viscous contribution to be negligible when the reflection is nearly specular. (c) 2005 American Institute of Chemical Engineers AIChE J, 52: 29-38, 2006.
Resumo:
The adsorption of Lennard-Jones fluids (argon and nitrogen) onto a graphitized thermal carbon black surface was studied with a Grand Canonical Monte Carlo Simulation (GCMC). The surface was assumed to be finite in length and composed of three graphene layers. When the GCMC simulation was used to describe adsorption on a graphite surface, an over-prediction of the isotherm was consistently observed in the pressure regions where the first and second layers are formed. To remove this over-prediction, surface mediation was accounted for to reduce the fluid-fluid interaction. Do and co-workers have introduced the so-called surface-mediation damping factor to correct the over-prediction for the case of a graphite surface of infinite extent, and this approach has yielded a good description of the adsorption isotherm. In this paper, the effects of the finite size of the graphene layer on the adsorption isotherm and how these would affect the extent of the surface mediation were studied. It was found that this finite-surface model provides a better description of the experimental data for graphitized thermal carbon black of high surface area (i.e. small crystallite size) while the infinite- surface model describes data for carbon black of very low surface area (i.e. large crystallite size).
Resumo:
A technique to standardise the analysis of cellular and non-cellular components in epithelial lining fluid (ELF) collected during saline lavage of pulmonary and pleural cavities was developed using the urea dilution method. Bronchoalveolar lavage (BAL) and pleural lavage (PL) fluids were collected from 12 clinically healthy cats. Total and differential cell counts in BAL fluid were within normal ranges for the cat, while cell Counts in PL fluid were assumed to be normal based on clinical health during examination, auscultation and lactate dehydrogenase (LDH) activities being comparable with other species. The major clinical implication of this study was that nucleated cell counts within feline ELF could not be predicted from analysis of lavage fluid which suggests that calculation of the proportion of ELF in lavage fluid by the urea dilution method may be necessary to avoid misdiagnosis of health or disease in pulmonary or pleural cavities. (C) 2005 ESFM and AAFP. Published by Elsevier Ltd. All rights reserved.
Resumo:
Saturated phospholipids (PCs), particularly dipalmitoylphosphatidylcholine (DPPC), predominate in surfactant lining the alveoli, although little is known about the relationship between saturated and unsaturated PCs on the outer surface of the lung, the pleura. Seven healthy cats were anesthetized and a bronchoalveolar lavage (BAL) was performed, immediately followed by a pleural lavage (PL). Lipid was extracted from lavage fluid and then analyzed for saturated, primarily dipalmitoylphosphatidylcholine (DPPC), and unsaturated PC species using high-performance liquid chromatography (HPLC) with combined fluorescence and ultraviolet detection. Dilution of epithelial lining fluid (ELF) in lavage fluids was corrected for using the urea method. The concentration of DPPC in BAL fluid (85.3 +/- 15.7 mu g/mL) was significantly higher (P=0.021) than unsaturated PCs (similar to 40 mu g/mL). However, unsaturated PCs (similar to 34 mu g/mL), particularly stearoyl-linoleoyl-phosphatidylcholine (SLPC; 17.4 +/- 6.8), were significantly higher (P = 0.021) than DPPC (4.3 +/- 1.8 mu g/mL) in PL fluid. These results show that unsaturated PCs appear functionally more important in the pleural cavity, which may have implications for surfactant replenishment following pleural disease or thoracic surgery. (c) 2005 Published by Elsevier Ltd.