19 resultados para Neuropathy - Experimental studies
Resumo:
The magnetic field of the Earth has for long been known to influence the behaviour and orientation of a variety of living organisms. Experimental studies of the magnetic sense have, however, been impaired by the lack of a plausible cellular and/or molecular mechanism providing meaningful explanation for detection of magnetic fields by these organisms. Recently, mechanosensitive (MS) ion channels have been implied to play a role in magnetoreception. In this study we have investigated the effect of static magnetic fields (SMFs) of moderate intensity on the activity and gadolinium block of MscL, the bacterial MS channel of large conductance, which has served as a model channel to study the basic physical principles of mechanosensory transduction in living cells. In addition to showing that direct application of the magnetic field decreased the activity of the MscL channel, our study demonstrates for the first time that SMFs can reverse the effect of gadolinium, a well-known blocker of MS channels. The results of our study are consistent with a notion that (1) the effects of SMFs on the MscL channels may result from changes in physical properties of the lipid bilayer due to diamagnetic anisotropy of phospholipid molecules and consequently (2) cooperative superdiamagnetism of phospholipid molecules under influence of SMFs could cause displacement of Gd3+ stop ions from the membrane bilayer and thus remove the MscL channel block.
Resumo:
Experimental studies were carried out on a bench-scale nitrogen removal system with a predenitrification configuration to gain insights into the spatial and temporal variations of DO, pH and ORP in such systems. It is demonstrated that these signals correlate strongly with the operational states of the system, and could therefore be used as system performance indicators. The DO concentration in the first aerobic zone, when receiving constant aeration, and the net pH change between the last and first aerobic zones display strong correlations with the influent ammonia concentration for the domestic wastewater used in this study. The pH profile along the aerobic zones gives good indication on the extent of nitrification. The experimental results also showed a good correlation between ORP values in the last aerobic zone and effluent ammonia and nitrate concentrations, provided that DO in this zone is controlled at a constant level. These results suggest that the DO, pH and ORP sensors could potentially be used as alternatives to the on-line nutrient sensors for the control of continuous systems. An idea of using a fuzzy inference system to make an integrated use of these signals for on-line aeration control is presented and demonstrated on the bench-scale system with promising results. The use of these sensors has to date only been demonstrated in intermittent systems, such as sequencing batch reactor systems.
Resumo:
Shear strengthening is required when an RC beam is found deficient in shear, or when its shear capacity falls below its flexural capacity after flexural strengthening. A recent technique for the shear strengthening of RC beams is to provide additional FRP web reinforcement, commonly in the form of bonded external FRP strips/sheets. Over the last few years, several experimental studies have been conducted on this new strengthening technique, which has established its effectiveness. While experimental methods of investigation are extremely useful in obtaining information about the composite behaviour of FRP and reinforced concrete, the use of numerical models such as the one presented in this paper helps in developing a good understanding of the behaviour at lower costs. In the study presented in this paper, ANSYS finite element program is used to examine the response of beams strengthened in shear by FRPs. The FE model is calibrated against test results performed at the University of Kentucky. Once validated, the model is used to examine the influence of fibre orientation, compressive strength of concrete, area of tensile and compressive reinforcements, and amount and distance between stirrups on the strength and ductility of FRP strengthened beam.
Resumo:
In empirical studies of Evolutionary Algorithms, it is usually desirable to evaluate and compare algorithms using as many different parameter settings and test problems as possible, in border to have a clear and detailed picture of their performance. Unfortunately, the total number of experiments required may be very large, which often makes such research work computationally prohibitive. In this paper, the application of a statistical method called racing is proposed as a general-purpose tool to reduce the computational requirements of large-scale experimental studies in evolutionary algorithms. Experimental results are presented that show that racing typically requires only a small fraction of the cost of an exhaustive experimental study.