76 resultados para NEUMANN-STREBEL INVARIANT
Resumo:
Sensitivity of output of a linear operator to its input can be quantified in various ways. In Control Theory, the input is usually interpreted as disturbance and the output is to be minimized in some sense. In stochastic worst-case design settings, the disturbance is considered random with imprecisely known probability distribution. The prior set of probability measures can be chosen so as to quantify how far the disturbance deviates from the white-noise hypothesis of Linear Quadratic Gaussian control. Such deviation can be measured by the minimal Kullback-Leibler informational divergence from the Gaussian distributions with zero mean and scalar covariance matrices. The resulting anisotropy functional is defined for finite power random vectors. Originally, anisotropy was introduced for directionally generic random vectors as the relative entropy of the normalized vector with respect to the uniform distribution on the unit sphere. The associated a-anisotropic norm of a matrix is then its maximum root mean square or average energy gain with respect to finite power or directionally generic inputs whose anisotropy is bounded above by a≥0. We give a systematic comparison of the anisotropy functionals and the associated norms. These are considered for unboundedly growing fragments of homogeneous Gaussian random fields on multidimensional integer lattice to yield mean anisotropy. Correspondingly, the anisotropic norms of finite matrices are extended to bounded linear translation invariant operators over such fields.
Resumo:
in this paper we investigate the solvability of the Neumann problem (1.1) involving the critical Sobolev exponents on the right-hand side of the equation and in the boundary condition. It is assumed that the coefficients Q and P are smooth. We examine the common effect of the mean curvature of the boundary a deltaOhm and the shape of the graph of the coefficients Q and P on the existence of solutions of problem (1.1). (C) 2003 Published by Elsevier Inc.
Resumo:
Let Q be a stable and conservative Q-matrix over a countable state space S consisting of an irreducible class C and a single absorbing state 0 that is accessible from C. Suppose that Q admits a finite mu-subinvariant measure in on C. We derive necessary and sufficient conditions for there to exist a Q-process for which m is mu-invariant on C, as well as a necessary condition for the uniqueness of such a process.
Resumo:
Concepts of constant absolute risk aversion and constant relative risk aversion have proved useful in the analysis of choice under uncertainty, but are quite restrictive, particularly when they are imposed jointly. A generalization of constant risk aversion, referred to as invariant risk aversion is developed. Invariant risk aversion is closely related to the possibility of representing preferences over state-contingent income vectors in terms of two parameters, the mean and a linearly homogeneous, translation-invariant index of riskiness. The best-known index with such properties is the standard deviation. The properties of the capital asset pricing model, usually expressed in terms of the mean and standard deviation, may be extended to the case of general invariant preferences. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
We show that quantum information can be encoded into entangled states of multiple indistinguishable particles in such a way that any inertial observer can prepare, manipulate, or measure the encoded state independent of their Lorentz reference frame. Such relativistically invariant quantum information is free of the difficulties associated with encoding into spin or other degrees of freedom in a relativistic context.
Resumo:
Three apparently distinct and different approaches have been proposed to account for the crystallographic features of diffusion-controlled precipitation. These three models are based on (a) an invariant line in the habit plane, (b) the parallelism of a pair of Deltags that are perpendicular to the habit plane and (c) the parallelism of a pair of Moire fringes that are in turn parallel to the habit plane. The purpose of the present paper is to show that these approaches are in fact absolutely equivalent and that when certain conditions are satisfied they are essentially the same as the recent edge-to-edge matching model put forward by the authors. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Variable-frequency pulsed electron paramagnetic resonance studies of the molybdenum(V) center of sulfite dehydrogenase (SDH) clearly show couplings from nearby exchangeable protons that are assigned to a (MoOHn)-O-v group. The hyperfine parameters for these exchangeable protons of SDH are the same at both low and high pH and similar to those for the high-pH forms of sulfite oxidases (SOs) from eukaryotes. The SDH proton parameters are distinctly different from the low-pH forms of chicken and human so.
Resumo:
Let S be a countable set and let Q = (q(ij), i, j is an element of S) be a conservative q-matrix over S with a single instantaneous state b. Suppose that we are given a real number mu >= 0 and a strictly positive probability measure m = (m(j), j is an element of S) such that Sigma(i is an element of S) m(i)q(ij) = -mu m(j), j 0 b. We prove that there exists a Q-process P(t) = (p(ij) (t), i, j E S) for which m is a mu-invariant measure, that is Sigma(i is an element of s) m(i)p(ij)(t) = e(-mu t)m(j), j is an element of S. We illustrate our results with reference to the Kolmogorov 'K 1' chain and a birth-death process with catastrophes and instantaneous resurrection.