28 resultados para N-acetyl-beta-d-glucosaminidase
Resumo:
d-Limonene was encapsulated with beta-cyclodextrin to improve its retention during pre-added flavour starch extrusion. The objective of this work was to determine the effect of processing condition on the flavour retention and extrudate properties. Corn starch containing five levels of beta-cyclodextrin-d-limonene capsules (0-5%) were extruded at five different maximum barrel temperatures (133-167 degrees C) and screw speeds (158-242 rpm) using a twin screw extruder. The effect of these parameters on the flavour retention, expansion, texture, colour difference (Delta E), Water Absorption Index, Water Solubility Index, and residence time distribution (RTD) were investigated. Barrel temperature and capsule level predominantly influenced flavour retention and extrudate properties, while screw speed primarily affected extruder performances such as torque, die pressure, specific mechanical energy and RTD. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Subunit vaccines, based on one or more epitopes, offer advantages over whole vaccines in terms of safety but are less antigenic. We investigated whether fusion of the cytokine interleukin-2 (IL-2) to influenza-derived subunit antigens could increase their antigenicity. The fusion of IL-2 to the subunit antigens increased their antigenicity in vitro. Encapsulation of the subunit antigen in liposomes also increased its antigenicity in vitro, yet encapsulation of the subunit IL-2 fusion did not. The use of anti-IL-2 receptor beta (IL-2Rbeta) antibody to block the receptor subunit on macrophages suggested that the adjuvancy exerted by IL-2 in our in vitro system is due to, at least in part, a previously unreported IL-2Rbeta-mediated antigen uptake mechanism.
Resumo:
Background: Solar keratoses (SKs) are among the strongest determinants of skin cancer, but little is known about the success of measures to control these common skin tumors. Objective: To determine whether daily sunscreen application and/or beta carotene supplementation retards the rate of occurrence of SKs in adults in the medium term. Design: Randomized controlled trial conducted between February 1992 and August 1996. Setting: General community of the subtropical township of Nambour, Australia (latitude, 26degrees south). Participants: A total of 1621 adults aged 25 to 74 years. Interventions: Participants were randomized to daily use of sunscreen (application of a high-protection sunscreen to their head, neck, arms, and hands every morning) or application of sunscreen at their usual discretionary rate. They were also randomly assigned to take either one 30-mg tablet of beta carotene or one placebo tablet each day. Main Outcome Measure: Change in the prevalent number of SKs in the intervention group relative to change in the control group. Results: The ratio of SK counts in 1994 relative to 1992 was lower in people randomized to daily sunscreen use (1.20; 95% confidence interval, 1.04-1.39) than in those randomized to discretionary sunscreen use (1.57; 95% confidence interval, 1.35-1.84). This 24% reduction is equivalent to the prevention of an average of I additional SK per person over that time. A reduction in the rate of change of SK prevalence was also seen in the sunscreen intervention group relative to the discretionary sunscreen group between 1994 and 1996, but it was not significant. No effect on the rate of change of prevalent SK counts was seen among those taking beta carotene supplements relative. to those taking placebo tablets. Conclusions: Daily application of sunscreen retarded the rate of SK acquisition among adults in a subtropical environment, while a beta carotene supplementation of 30 mg/d had no influence on the occurrence of SKs.
Resumo:
Human Valpha24(+)Vbeta11(+) natural killer T (NKT) cells are a distinct CD1d-restricted lymphoid subset specifically and potently activated by alpha-galactosylceramide (alpha-GalCer) (KRN7000) presented by CD1 d on antigen-presenting cells. Preclinical models show that activation of Valpha24(+)Vbeta11(+) NKT cells induces effective antitumor immune responses and potentially important secondary immune effects, including activation of conventional T cells and NK cells. We describe the first clinical trial of cancer immune therapy with alpha-GalCer-pulsed CD1d-expressing dendritic cells. The results show that this therapy has substantial, rapid, and highly reproducible specific effects on Valpha24(+)Vbeta11(+) NKT cells and provide the first human in vivo evidence that Valpha24(+)Vbeta11(+) NKT cell stimulation leads to activation of both innate and acquired immunity, resulting in modulation of NK, T-, and B-cell numbers and increased serum interferon-gamma. We present the first clinical evidence that Valpha24(+)Vbeta11(+) NKT cell memory produces faster, more vigorous secondary immune responses by innate and acquired immunity upon restimulation.
Resumo:
Immunotherapy strategies aimed at increasing human Valpha24(+)Vbeta11(+) natural killer T (NKT) cell numbers are currently a major focus. To provide further information towards the goal of NKT cell-based immunotherapy, we assessed the effects of age, cancer status and prior anticancer treatment on NKT cell numbers and their expansion capacity following alpha-galactosylceramide (alpha-GalCer) stimulation. The percentage and absolute number of peripheral blood NKT cells was assessed in 40 healthy donors and 109 solid cancer patients ( colorectal ( n = 33), breast ( n = 10), melanoma ( n = 17), lung ( n = 8), renal cell carcinoma ( n = 10), other cancers ( n = 31)). Responsiveness to alpha-GalCer stimulation was also assessed in 28 of the cancer patients and 37 of the healthy donors. Natural killer T cell numbers were significantly reduced in melanoma and breast cancer patients. While NKT numbers decreased with age in healthy donors, NKT cells were decreased in these cancer subgroups despite age and sex adjustments. Prior radiation treatment was shown to contribute to the observed reduction in melanoma patients. Although cancer patient NKT cells were significantly less responsive to alpha-GalCer stimulation, they remained capable of substantial expansion. Natural killer T cells are therefore modulated by age, malignancy and prior anticancer treatment; however, cancer patient NKT cells remain capable of responding to alpha-GalCer-based immenotherapies.
Resumo:
The sliding clamp of the Escherichia coli replisome is now understood to interact with many proteins involved in DNA synthesis and repair. A universal interaction motif is proposed to be one mechanism by which those proteins bind the E. coli sliding clamp, a homodimer of the beta subunit, at a single site on the dimer. The numerous beta(2)-binding proteins have various versions of the consensus interaction motif, including a related hexameric sequence. To determine if the variants of the motif could contribute to the competition of the beta-binding proteins for the beta(2) site, synthetic peptides derived from the putative beta(2)-binding motifs were assessed for their abilities to inhibit protein-beta(2) interactions, to bind directly to beta(2), and to inhibit DNA synthesis in vitro. A hierarchy emerged, which was consistent with sequence similarity to the pentameric consensus motif, QL(S/D)LF, and peptides containing proposed hexameric motifs were shown to have activities comparable to those containing the consensus sequence. The hierarchy of peptide binding may be indicative of a competitive hierarchy for the binding of proteins to beta(2) in various stages or circumstances of DNA replication and repair.
Resumo:
It has been shown that P auxiliary subunits increase current amplitude in voltage-dependent calcium channels. In this study, however, we found a hovel inhibitory effect of beta3 Subunit on macroscopic Ba2+ currents through recombinant N- and R-type calcium channels expressed in Xenopus oocytes. Overexpressed beta3 (12.5 ng/ cell cRNA) significantly suppressed N- and R-type, but not L-type, calcium channel currents at physiological holding potentials (HPs) of -60 and -80 mV At a HP of -80 mV, coinjection of various concentrations (0-12.5 ng) of the beta3 with Ca,.2.2alpha(1) and alpha(2)delta enhanced the maximum conductance of expressed channels at lower beta3 concentrations but at higher concentrations (>2.5 ng/cell) caused a marked inhibition. The beta3-induced Current suppression was reversed at a HP of - 120 mV, suggesting that the inhibition was voltage dependent. A high concentration of Ba-2divided by (40 mM) as a charge carrier also largely diminished the effect of P3 at -80 mV Therefore, experimental conditions (HP, divalent cation concentration, and P3 subunit concentration) approaching normal physiological conditions were critical to elucidate the full extent of this novel P3 effect. Steady-state inactivation curves revealed that N-type channels exhibited closed-state inactivation without P3, and that P3 caused an similar to40 mV negative shift of the inactivation, producing a second component with an inactivation midpoint of approximately -85 mV The inactivation of N-type channels in the presence of a high concentration (12.5 ng/cell) of P3 developed slowly and the time-dependent inactivation curve was best fit by the sum of two exponential functions with time constants of 14 s and 8.8 min at -80 mV Similar ultra-slow inactivation was observed for N-type channels Without P3. Thus, P3 can have a profound negative regulatory effect on N-type (and also R-type) calcium channels by Causing a hyperpolarizing shift of the inactivation without affecting ultra-slow and closed-state inactivation properties.
Resumo:
The poor response to immunotherapy in patients with multiple myeloma (MM) indicates that a better understanding of any defects in the immune response in these patients is required before effective therapeutic strategies can be developed. Recently we reported that high potency (CMRF44(+)) dendritic cells (DC) in the peripheral blood of patients with MM failed to significantly up-regulate the expression of the B7 co-stimulatory molecules, CD80 and CD86, in response to an appropriate signal from soluble trimeric human CD40 ligand. This defect was caused by transforming growth factor beta(1) (TGFbeta(1)) and interleukin (IL)-10, produced by malignant plasma cells, and the defect was neutralized in vitro with anti-TGFbeta(1). As this defect could impact on immunotherapeutic strategies and may be a major cause of the failure of recent trials, it was important to identify a more clinically useful agent that could correct the defect in vivo. In this study of 59 MM patients, the relative and absolute numbers of blood DC were only significantly decreased in patients with stage III disease and CD80 up-regulation was reduced in both stage I and stage III. It was demonstrated that both IL-12 and interferon-gamma neutralized the failure to stimulate CD80 up-regulation by huCD40LT in vitro. IL-12 did not cause a change in the distribution of DC subsets that were predominantly myeloid (CD11c+ and CDw123-) suggesting that there would be a predominantly T-helper cell type response. The addition of IL-12 or interferon-gamma to future immunotherapy trials involving these patients should be considered.
Resumo:
Glutamate dehydrogenase (GDH; EC 1.4.1.2-1.4.1.4) catalyses in vitro the reversible amination of 2-oxoglutarate to glutamate. In vascular plants the in vivo direction(s) of the GDH reaction and hence the physiological role(s) of this enzyme remain obscure. A phylogenetic analysis identified two clearly separated groups of higher-plant GDH genes encoding either the alpha- or beta-subunit of the GDH holoenzyme. To help clarify the physiological role(s) of GDH, tobacco (Nicotiana tabacum L.) was transformed with either an antisense or sense copy of a beta-subunit gene, and transgenic plants recovered with between 0.5- and 34-times normal leaf GDH activity. This large modulation of GDH activity (shown to be via alteration of beta-subunit levels) had little effect on leaf ammonium or the leaf free amino acid pool, except that a large increase in GDH activity was associated with a significant decrease in leaf Asp (similar to 51%, P=0.0045). Similarly, plant growth and development were not affected, suggesting that a large modulation of GDH beta-subunit titre does not affect plant viability under the ideal growing conditions employed. Reduction of GDH activity and protein levels in an antisense line was associated with a large increase in transcripts of a beta-subunit gene, suggesting that the reduction in beta-subunit levels might have been due to translational inhibition. In another experiment designed to detect post-translational up-regulation of GDH activity, GDH over-expressing plants were subjected to prolonged dark-stress. GDH activity increased, but this was found to be due more likely to resistance of the GDH protein to stress-induced proteolysis, rather than to post-translational up-regulation.
Resumo:
Table beet production in the Lockyer Valley of south-eastern Queensland is known to be adversely affected by soilborne root disease from infection by Pythium spp. However, little is known regarding the species or genotypes that are the causal agents of both pre- and post-emergence damping off. Based on RFLP analysis with HhaI, HinfI and MboI of the PCR amplified ITS region DNA from soil and diseased plant samples, the majority of 130 Pythium isolates could be grouped into three genotypes, designated LVP A, LVP B and LVP C. These groups comprised 43, 41 and 7% of all isolates, respectively. Deoxyribonucleic acid sequence analysis of the ITS region indicated that LVP A was a strain of Pythium aphanidermatum, with greater than 99% similarity to the corresponding P. aphanidermatum sequences from the publicly accessible databases. The DNA sequences from LVP B and LVP C were most closely related to P. ultimum and P. dissotocum, respectively. Lower frequencies of other distinct isolates with unique RFLP patterns were also obtained with high levels of similarity (> 97%) to P. heterothallicum, P. periplocum and genotypes of P. ultimum other than LVP B. Inoculation trials of 1- and 4-week-old beet seedlings indicated that compared with isolates of the LVP B genotype, a higher frequency of LVP A isolates caused disease. Isolates with the LVP A, LVP B and LVP C genotypes were highly sensitive to the fungicide Ridomil MZ, which suppressed radial growth on V8 agar between approximately four and thirty fold at 5 mu g/mL metalaxyl and 40 mu g/mL mancozeb, a concentration far lower than the recommended field application rate.
Resumo:
Because the poor growth performance of intensively housed pigs is associated with increased circulating glucocorticoid concentrations, we investigated the effects of glucocorticoid suppression by inducing a humoral immune response to ACTH on physiological and production variables in growing pigs. Grower pigs (28.6 0.9 kg) were immunized with amino acids 1 through 24 of ACTH conjugated to ovalbumin and suspended in diethylaminoethyl (DEAE) dextran-adjuvant or adjuvant alone (control) on d 1, 28, and 56. The ACTH-specific antibody titers generated suppressed increases in cortisol concentrations on d 63 in response to an acute stressor (P = 0.002; control = 71 +/- 8.2 ng/ mL; ACTH-immune = 43 +/- 4.9 ng/mL) without altering basal concentrations. Plasma beta-endorphin concentrations were also increased (P < 0.001) on d 63 (control = 18 +/- 2.1 ng/mL; ACTH-immune = 63 +/- 7.3 ng/mL), presumably because of a release from negative feedback on the expression of proopiomelanocortin in pituitary corticotropes. Immunization against ACTH did not alter ADG (P = 0.120; control = 1,077 25; ACTH-immune = 1,143 25 g) or ADFI (P = 0.64; control = 2,719 42; ACTH-immune = 2,749 42 g) and did not modify behavior (P = 0.681) assessed by measuring vocalization in response to acute restraint. In summary, suppression of stress-induced cortisol responses through ACTH immunization increased beta-endorphin concentrations, but it did not modify ADG, ADFI, or restraint vocalization score in growing pigs.