30 resultados para Mutations in proteins
Resumo:
The product of the gene (ATM) mutated in the human genetic disorder ataxia-telangiectasia (A-T) is a high molecular weight, protein (similar to350 kDa) containing a C-terminal protein kinase domain and a number of other putative domains not yet functionally defined. The majority of ATM gene mutations in A-T patients are truncating, resulting in prematurely terminated products that are highly unstable. Missense mutations within the kinase domain and elsewhere in the molecule alter the stability of the protein and lead to loss of protein kinase activity. Only rarely are patients observed with two missense mutations and this gives rise to a milder disease phenotype. Evidence for a dominant interfering effect on normal ATM kinase activity has been reported in cell lines transfected with missense mutant ATM and in cell lines from some A-T heterozygotes. The dominant negative effect of mutant ATM is manifested by an enhancement of cellular radiosensitivity and may be responsible for the cancer predisposition observed in carriers of ATM missense mutations. In this review, we explore the domain structure of the ATM molecule, sites of interaction with other proteins and the consequences of specific amino acid changes on function. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Numerous mRNA molecules are localized in regions of the dendrites of neurons, some moving along dendrites in response to synaptic activity. The proteins encoded by these RNAs have diverse functions, including participation in memory formation and long-term potentiation. Recent experiments have shown that a cytoplasmic RNA trafficking pathway described for oligodendrocytes also operates in neurons. Transported RNAs possess a cis-acting element that directs them to granules, which are transported along microtubules by the motor proteins kinesin and dynein. These RNA molecules are recruited to the cytoplasmic transport granules by cooperative interaction with a cognate trans-acting factor. mRNAs containing the 11-nucleotide A2RE11 or 21-nucleotide A2RE sequences bind heterogeneous nuclear ribonucleoproteins A2 and A3, which are abundant in the brain. Mutations in this cis-acting element that weaken its interaction with hnRNP A2 also interfere with RNA trafficking. Several dendritically localized mRNAs, including those encoding calcium-calmodulin-dependent protein kinase 11 a subunit and neurogranin, possess A2RE-like sequences, suggesting that they may be localized by interaction with these heterogeneous nuclear ribonucleoproteins. Calcium-calmodulin-dependent protein kinase 11 a subunit is of particular interest: Its RNA is transported in depolarized neurons, and the protein it encodes is essential for establishing long-term memory. Several other cis-acting sequences and trans-acting factors that participate in neuronal RNA localization have been discovered.
Resumo:
Much of the hearing loss that occurs in old age is likely to be due to the long-term deterioration of the mitochondria in the different structures of the cochlea. The current review surveys some of the basic information on mitochondria and mitochondrial DNA, as a background to their possible involvement in presbyacusis. It is likely that oxygen radicals damage mitochondrial DNA and other components of the mitochondria, such as their proteins and lipids. This further compromises both oxidative phosphorylation and the repair processes in mitochondria, setting up a vicious cycle of degradation. Evidence is presented from inherited point mutations on the possibly most critical sites for mutations in mitochondrial DNA associated with hearing loss. It is suggested that random sorting and clonal expansion of mutations both maintain the integrity of the pool of mitochondrial DNA molecules and give rise to the apoptosis that leads to loss of vulnerable cells, and hence to deafness. It is moreover suggested that apoptosis of the vulnerable cells of the inner ear may to some extent be preventable, or at least delayed. Copyright (C) 2004 S. Karger AG, Basel.
Resumo:
The aim of this study was to identify possible disease-associated mutations in the canine homologue of the polycystic kidney disease gene 1 (PKD1) in Bull Terriers with autosomal dominant polycystic kidney disease. Messenger RNA was obtained from the blood or renal tissue of five Bull Terriers with the disease and four close relatives without the disease. Reverse transcription, PCR and 3' rapid amplification of cDNA ends were used to amplify the coding and 3' untranslated regions of this transcript. Comparison of PKD1 sequence between the affected and unaffected Bull Terriers, revealed six polymorphisms, but no disease-associated mutations.
Resumo:
The presence and location of intramolecular disulphide bonds are a key determinant of the structure and function of proteins. Intramolecular disulphide bonds in proteins have previously been analyzed under the assumption that there is no clear relationship between disulphide arrangement and disulphide concentration. To investigate this, a set of sequence nonhomologous protein chains containing one or more intramolecular disulphide bonds was extracted from the Protein Data Bank, and the arrangements of the bonds, Protein Data Bank header, and Structural Characterization of Proteins fold were analyzed as a function of intramolecular, containing proteins were disulphide bond concentration. Two populations of intramolecular disulphide bond-containing identified, with a naturally occurring partition at 25 residues per bond. These populations were named intramolecular disulphide bond-rich and -poor. Benefits of partitioning were illustrated by three results: (1) rich chains most frequently contained three disulphides, explaining the plateaux in extant disulphide frequency distributions; (2) a positive relationship between median chain length and the number of disulphides, only seen when the data were partitioned-, and (3) the most common bonding pattern for chains with three disulphide bonds was based on the most common for two, only when the data were partitioned. The two populations had different headers, folds, bond arrangements, and chain lengths. Associations between IDSB concentration, IDSB bonding pattern, loop sizes, SCOP fold, and PDB header were also found. From this, we found that intramolecular disulphide bond-rich and -poor proteins follow different bonding rules, and must be considered separately to generate meaningful models of bond formation.
Resumo:
CIC-5 is a chloride (Cl-) channel expressed in renal tubules and is critical for normal tubular function. Loss of function nonsense or missense mutations in CIC-5 are associated with Dent's disease, a condition in which patients present with low molecular weight (LMW) proteinuria (including albuminuria), hypercalciuria and nephrolithiasis. Several key studies in CIC-5 knockout mice have shown that the proteinuria results from defective tubular reabsorption of proteins. CIC-5 is typically regarded as an intracellular Cl- channel and thus the defect in this receptor-mediated uptake pathway was initially attributed to the failure of the early endosomes to acidify correctly. CIC-5 was postulated to play a key role in transporting the Cl- ions required to compensate for the movement of H+ during endosomal acidification. However, more recent studies suggest additional roles for CIC-5 in the endocytosis of albumin. CIC-5 is now known to be expressed at low levels at the cell surface and appears to be a key component in the assembly of the macromolecular complex involved in protein endocytosis. Furthermore, mutations in CIC-5 affect the trafficking of v-H+-ATPase and result in decreased expression of the albumin receptor megalin/cubulin. Thus, the expression of CIC-5 at the cell surface as well as its presence in endosomes appears to be essential for normal protein uptake by the renal proximal tubule. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Sudden cardiac death in small animals is uncommon but often occurs due to cardiac conduction defects or myocardial diseases. Primary cardiac conduction defects are mainly caused by mutations in genes involved in impulse conduction processes (e.g., gapjunction genes and transcription factors) or repolarisation processes (e.g., ion-channel genes), whereas primary cardiomyopathies are mainly caused by defective force generation or force transmission due to gene mutations in either sarcomeric or cytoskeleton proteins. Although over 50 genes have been identified in humans directly or indirectly related to sudden cardiac death, no genetic aetiologies have been identified in small animals. Sudden cardiac deaths have been also reported in German Shepherds and Boxers. A better understanding of molecular genetic aetiologies for sudden cardiac death will be required for future study toward unveiling actiology in sudden cardiac death in small animals. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Our previous studies using trans-complementation analysis of Kunjin virus (KUN) full-length cDNA clones harboring in-frame deletions in the NS3 gene demonstrated the inability of these defective complemented RNAs to be packaged into virus particles (W. J. Liu, P. L. Sedlak, N. Kondratieva, and A. A. Khromykh, J. Virol. 76:10766-10775). In this study we aimed to establish whether this requirement for NS3 in RNA packaging is determined by the secondary RNA structure of the NS3 gene or by the essential role of the translated NS3 gene product. Multiple silent mutations of three computer-predicted stable RNA structures in the NS3 coding region of KUN replicon RNA aimed at disrupting RNA secondary structure without affecting amino acid sequence did not affect RNA replication and packaging into virus-like particles in the packaging cell line, thus demonstrating that the predicted conserved RNA structures in the NS3 gene do not play a role in RNA replication and/or packaging. In contrast, double frameshift mutations in the NS3 coding region of full-length KUN RNA, producing scrambled NS3 protein but retaining secondary RNA structure, resulted in the loss of ability of these defective RNAs to be packaged into virus particles in complementation experiments in KUN replicon-expressing cells. Furthermore, the more robust complementation-packaging system based on established stable cell lines producing large amounts of complemented replicating NS3-deficient replicon RNAs and infection with KUN virus to provide structural proteins also failed to detect any secreted virus-like particles containing packaged NS3-deficient replicon RNAs. These results have now firmly established the requirement of KUN NS3 protein translated in cis for genome packaging into virus particles.
Resumo:
Electrolyte Transport in the Mammalian Colon: Mechanisms and Implications for Disease. Physiol. Rev. 82: 245-289, 2002.The colonic epithelium has both absorptive and secretory functions. The transport is characterized by a net absorption of NaCl, short-chain fatty acids (SCFA), and water, allowing extrusion of a feces with very little water and salt content. In addition, the epithelium does secret mucus, bicarbonate, and KCl. Polarized distribution of transport proteins in both luminal and basolateral membranes enables efficient salt transport in both directions, probably even within an individual cell. Meanwhile, most of the participating transport proteins have been identified, and their function has been studied in detail. Absorption of NaCl is a rather steady process that is controlled by steroid hormones regulating the expression of epithelial Na+ channels (ENaC), the Na+-K+-ATPase, and additional modulating factors such as the serum- and glucocorticoid-regulated kinase SGK. Acute regulation of absorption may occur by a Na+ feedback mechanism and the cystic fibrosis transmembrane conductance regulator (CFTR). Cl- secretion in the adult colon relies on luminal CFTR, which is a cAMP-regulated Cl- channel and a regulator of other transport proteins. As a consequence, mutations in CFTR result in both impaired Cl- secretion and enhanced Na+ absorption in the colon of cystic fibrosis (CF) patients. Ca2+- and cAMP-activated basolateral K+ channels support both secretion and absorption of electrolytes and work in concert with additional regulatory proteins, which determine their functional and pharmacological profile. Knowledge of the mechanisms of electrolyte transport in the colon enables the development of new strategies for the treatment of CF and secretory diarrhea. It will also lead to a better understanding of the pathophysiological events during inflammatory bowel disease and development of colonic carcinoma.