21 resultados para Monogenean Entobdella-soleae


Relevância:

10.00% 10.00%

Publicador:

Resumo:

If the cestodes are excluded, then the parasitic platyhelminths of fishes divide neatly into the external and monoxenous Monogenea and the internal and heteroxenous Digenea. Both groups have apparently had long associations of coevolution, host switching and adaptation with fishes and have become highly successful in their respective habitats. Current estimates of species richness for the two groups suggest that they may be remarkably similar. Here we consider the nature of the diversity of the Monogenea. and Digenea of fishes in terms of richness of species and higher taxa to determine what processes may be responsible for observed differences. The Monogenea includes at least two super-genera (Dactylogyrus and Gyrodactylus) each of which has hundreds of species, no comparable genera are found in the Digenea. Possible reasons for this difference include the higher host specificity of monogeneans and their shorter generation Lime. If allowance is made for the vagaries of taxonomic 'lumping' and 'splitting', then there are probably comparable numbers of families of monogeneans and digeneans in fishes. However, the nature of the families differ profoundly. Richness in higher taxa (families) in the Digenea is explicable in terms of processes that appear to have been unimportant in the Monogenea. Readily identifiable sources of diversity in the Digenea are: recolonisation of fishes by taxa that arose in association with tetrapods; adoption of new sites within hosts; adoption of new diets and feeding mechanisms; adaptations relating to the exploitation of ecologically similar groups of fishes and second intermediate hosts; and adaptations relating to the exploitation of phylogenetic lineages of molluscs. In contrast, most higher- level monogenean diversity (other than that associated with the subclasses) relates principally to morphological specialisation for attachment by the haptor. (C) 2002 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cestodes (tapeworms) are a derived, parasitic clade of the phylum Platyhelminthes (flatworms). The cestode body wall represents an adaptation to its endoparasitic lifestyle. The epidermis forms a nonciliated syncytium, and both muscular and nervous system are reduced. Morphological differences between cestodes and free-living flatworms become apparent already during early embryogenesis. Cestodes have a complex life cycle that begins with an infectious larva, called the oncosphere. In regard to cell number, cestode oncospheres are among the simplest multicellular organisms, containing in the order of 50-100 cells. As part of our continuing effort to analyze embryonic development in flatworms, we describe here the staining pattern obtained with acTub in embryos and larvae of the cestode Hymenolepis diminuta and, briefly, the monogenean Neoheterocotyle rhinobatidis. In addition, we labeled the embryonic musculature of Hymenolepis with phalloidin. In Hymenolepis embryos, two different cell types that we interpret as neurons and epidermal gland cells express acTub. There exist only two neurons that develop close to the midline at the anterior pole of the embryo. The axons of these two neurons project posteriorly into the center of the oncosphere, where they innervate the complex of muscles that is attached to the booklets. In addition to neurons, acTub labels a small and invariant set of epidermal gland cells that develop at superficial positions, anteriorly adjacent to the neurons, in the dorsal midline, and around the posteriorly located hooklets. During late stages of embryogenesis they spread and form a complete covering of the embryo. We discuss these data in the broader context of platyhelminth embryology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent studies on cleaning behaviour suggest that there are conflicts between cleaners and their clients over what cleaners eat. The diet of cleaners usually contains ectoparasites and some client tissue. It is unclear, however, whether cleaners prefer client tissue over ectoparasites or whether they include client tissue in their diet only when searching for parasites alone is not profitable. To distinguish between these two hypotheses, we trained cleaner fish Labroides dimidiatus to feed from plates and offered them client mucus from the parrotfish Chlorurus sordidus, parasitic monogenean flat-worms, parasitic gnathiid isopods and boiled flour glue as a control. We found that cleaners ate more mucus and monogeneans than gnathiids, with gnathiids eaten slightly more often than the control substance. Because gnathiids are the most abundant ectoparasites, our results suggest a potential for conflict between cleaners and clients over what the cleaner should eat, and support studies emphasizing the importance of partner control in keeping cleaning interactions mutualistic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The monogeneans Decacotyle lymmae and D. tetrakordyle (Monocotylidae: Decacotylinae), from gills of the dasyatid stingrays Taeniura lymma and Pastinachus sephen, respectively, have a single aperture for adhesive secretion on each side of the anterior ventrolateral region. Rod-shaped bodies (S1) and electron-dense spherical secretion (S2) exit through specialised ducts opening adjacent to one another within these apertures. The S1 bodies are 230 +/- 11 nm wide and greater than or equal to4 mum long in D. lymmae and 240 +/- 9 nm wide and greater than or equal to3.3 mum long in D. tetrakordyle. The S2 bodies have a diameter of 88 +/- 7 nm in D. lymmae and 65 +/- 6 nm in D. tetrakordyle. The apertures are unusual in being extremely small (internal diameter, 3-5 mum). Each aperture has a slit-like surface opening as small as 160 nm wide, surrounded by muscle fibres indicating that they may be opened and closed. The aperture is also surrounded and underlain by muscle fibres that may aid in secretion from, or even eversion of, the tissue within the aperture. Sensilla/cilia are also found within the apertures. Additional secretions from anteromedian and anterolateral glands (body glands), each containing granular secretions, occur in profusion and exit anteriorly and posteriorly to the position of the apertures, through duct openings in the general body tegument. These granular secretions do not appear to be associated with anterior adhesion. Both species show similarities in aperture, underlying tissue, sense organ, and secretion detail, in accordance with findings from other monogenean genera, and which supports the importance of such data for phylogenetic studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Apart from cleaner fish, there are many reports on cleaning by shrimps, yet whether shrimps actually 'clean', i.e. eat parasites in the wild, has not been demonstrated. For the first time, we show that, conclusively, cleaner shrimp in the wild do clean. We found crustacean ectoparasites from the Family Gnathiidae and the Class Copepoda in the gut contents of wild cleaner shrimp, Urocaridella sp. and Periclimenes holthuisi. In addition, they ate parasitic monogenean flatworms, Benedenia sp., offered to them in the laboratory. Finally, P. holthuisi, significantly reduced monogenean, Benedenia sp., loads by 74.5% on captive surgeonfish Ctenochaetus striatus within 48 h. Such large reductions in parasite loads are likely to benefit individual fish. These results emphasise the need for more information on the ecological role of cleaner shrimp on coral reefs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The anterior adhesion and detachment mechanisms observed for Neoheterocotyle rhinobatidis and Troglocephalus rhinobatidis (Monogenea: Monocotylidae) appear similar to those observed for the two other monopisthocotylean monogenean species with anterior apertures for which published data are available. This supports the theory that monogeneans with apertures may utilise a common mechanism. Adult anterior apertures can open and close and duct endings can evert during the adhesion phase and retract during detachment and searching behaviour. The adhesive is comprised of two secretory types, rod-shaped and spheroidal bodies, found within anterior apertures. These exit together and undergo mixing to produce the adhesive matrix in which elongate membranes from rod-shaped bodies are seen intermixed with a granular electron-dense matrix. The morphology of the adhesive matrix differs from that found for some other monogenean taxa. Anterior detachment by these monocotylids appears to involve a depletion of rod-shaped bodies in ducts and mechanical withdrawal of the anterior end.