23 resultados para Molecular Dynamic Simulations


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A theory is discussed of single-component transport in nanopores, recently developed by Bhatia and coworkers. The theory considers the oscillatory motion of molecules between diffuse wall collisions, arising from the fluid-wall interaction, along with superimposed viscous flow due to fluid-fluid interaction. The theory is tested against molecular dynamics simulations for hydrogen, methane, and carbon tetrafluoride flow in cylindrical nanopores in silica. Although exact at low densities, the theory performs well even at high densities, with the density dependency of the transport coefficient arising from viscous effects. Such viscous effects are reduced at high densities because of the large increase in viscosity, which explains the maximum in the transport coefficient with increase in density. Further, it is seen that in narrow pore sizes of less than two molecular diameters, where a complete monolayer cannot form on the surface, the mutual interference of molecules on opposite sides of the cross section can reduce the transport coefficient, and lead to a maximum in the transport coefficient with increasing density. The theory is also tested for the case of partially diffuse reflection and shows the viscous contribution to be negligible when the reflection is nearly specular. (c) 2005 American Institute of Chemical Engineers AIChE J, 52: 29-38, 2006.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new integration scheme is developed for nonequilibrium molecular dynamics simulations where the temperature is constrained by a Gaussian thermostat. The utility of the scheme is demonstrated by its application to the SLLOD algorithm which is the standard nonequilibrium molecular dynamics algorithm for studying shear flow. Unlike conventional integrators, the new integrators are constructed using operator-splitting techniques to ensure stability and that little or no drift in the kinetic energy occurs. Moreover, they require minimum computer memory and are straightforward to program. Numerical experiments show that the efficiency and stability of the new integrators compare favorably with conventional integrators such as the Runge-Kutta and Gear predictor-corrector methods. (C) 1999 American Institute of Physics. [S0021-9606(99)50125-6].

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The structural and dynamic properties of dioctadecyldimethylammoniums (DODDMA) intercalated into 2:1 layered clays are investigated using isothermal-isobaric (NPT) molecular dynamics (MD) simulation. The simulated results are in reasonably good agreement with the available experimental measurements, such as X-ray diffraction (XRD), atom force microscopy (AFM), Fourier transform infrared (FTIR), and nuclear magnetic resonance (NMR) spectroscopies. The nitrogen atoms are found to be located mainly within two layers close to the clay surface whereas methylene groups form a pseudoquadrilayer structure. The results of tilt angle and order parameter show that interior two-bond segments of alkyl chains prefer an arrangement parallel to the clay surface, whereas the segments toward end groups adopt a random orientation. In addition, the alkyl chains within the layer structure lie almost parallel to the clay surface whereas those out of the layer structure are essentially perpendicular to the surface. The trans conformations are predominant in all cases although extensive gauche conformations are observed, which is in agreement with previous simulations on n-butane. Moreover, an odd-even effect in conformation distributions is observed mainly along the chains close to the head and tail groups. The diffusion constants of both nitrogen atoms and methylene groups in these nanoconfined alkyl chains increase with the temperature and methelene position toward the tail groups.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Clustering of the T cell integrin, LFA-1, at specialized regions of intercellular contact initiates integrin-mediated adhesion and downstream signaling, events that are necessary for a successful immunological response. But how clustering is achieved and sustained is not known. Here we establish that an LFA-1-associated molecule, PTA-1, is localized to membrane rafts and binds the carboxyl-terminal domain of isoforms of the actin-binding protein 4.1G. Protein 4.1 is known to associate with the membrane-associated guanylate kinase homologue, human discs large. We show that the carboxyl-terminal peptide of PTA-1 also can bind human discs large and that the presence or absence of this peptide greatly influences binding between PTA-1 and different isoforms of 4.1G. T cell stimulation with phorbol ester or PTA-1 cross-linking induces PTA-1 and 4.1G to associate tightly with the cytoskeleton, and the PTA-1 from such activated cells now can bind to the amino-terminal region of 4.1G. We propose that these dynamic associations provide the structural basis for a regulated molecular adhesive complex that serves to cluster and transport LFA-1 and associated molecules.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigate the quantum many-body dynamics of dissociation of a Bose-Einstein condensate of molecular dimers into pairs of constituent bosonic atoms and analyze the resulting atom-atom correlations. The quantum fields of both the molecules and atoms are simulated from first principles in three dimensions using the positive-P representation method. This allows us to provide an exact treatment of the molecular field depletion and s-wave scattering interactions between the particles, as well as to extend the analysis to nonuniform systems. In the simplest uniform case, we find that the major source of atom-atom decorrelation is atom-atom recombination which produces molecules outside the initially occupied condensate mode. The unwanted molecules are formed from dissociated atom pairs with nonopposite momenta. The net effect of this process-which becomes increasingly significant for dissociation durations corresponding to more than about 40% conversion-is to reduce the atom-atom correlations. In addition, for nonuniform systems we find that mode mixing due to inhomogeneity can result in further degradation of the correlation signal. We characterize the correlation strength via the degree of squeezing of particle number-difference fluctuations in a certain momentum-space volume and show that the correlation strength can be increased if the signals are binned into larger counting volumes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A proposal for using single molecules as nanoprobes capable of detecting the trajectory of an elementary charge is discussed in detail. Presented numerical simulations prove that this singlemolecule technique allows determination of a three-dimensional single-electron displacement within a few seconds with an accurocy better than 0.006 nm. Surprisingly, this significantly exceeds the accuracy with which the probe;, molecule itself can be localized (given the same measuring time by means of single-molecule microscopy. It is also shown that the optimal concentration of probe molecules in the vicinity of:the electron (i.e. the concentration which provides the best accuracy of the inferred electron displacement) is of the order of 10(-5) m.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of the box shape on the dynamic behavior of proteins simulated under periodic boundary conditions is evaluated. In particular, the influence of simulation boxes defined by the near-densest lattice packing (NDLP) in conjunction with rotational constraints is compared to that of standard box types without these constraints. Three different proteins of varying size, shape, and secondary structure content were examined in the study. The statistical significance of differences in RMSD, radius of gyration, solvent-accessible surface, number of hydrogen bonds, and secondary structure content between proteins, box types, and the application or not of rotational constraints has been assessed. Furthermore, the differences in the collective modes for each protein between different boxes and the application or not of rotational constraints have been examined. In total 105 simulations were performed, and the results compared using a three-way multivariate analysis of variance (MANOVA) for properties derived from the trajectories and a three-way univariate analysis of variance (ANOVA) for collective modes. It is shown that application of roto-translational constraints does not have a statistically significant effect on the results obtained from the different simulations. However, the choice of simulation box was found to have a small (5-10%), but statistically significant effect on the behavior of two of the three proteins included in the study. (c) 2005 Wiley Periodicals, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Circadian clocks maintain robust and accurate timing over a broad range of physiological temperatures, a characteristic termed temperature compensation. In Arabidopsis thaliana, ambient temperature affects the rhythmic accumulation of transcripts encoding the clock components TIMING OF CAB EXPRESSION1 (TOC1), GIGANTEA (GI), and the partially redundant genes CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY). The amplitude and peak levels increase for TOC1 and GI RNA rhythms as the temperature increases (from 17 to 27 degrees C), whereas they decrease for LHY. However, as temperatures decrease ( from 17 to 12 degrees C), CCA1 and LHY RNA rhythms increase in amplitude and peak expression level. At 27 degrees C, a dynamic balance between GI and LHY allows temperature compensation in wild-type plants, but circadian function is impaired in Ihy and gi mutant plants. However, at 12 degrees C, CCA1 has more effect on the buffering mechanism than LHY, as the cca1 and gi mutations impair circadian rhythms more than Ihy at the lower temperature. At 17 degrees C, GI is apparently dispensable for free-running circadian rhythms, although partial GI function can affect circadian period. Numerical simulations using the interlocking-loop model show that balancing LHY/CCA1 function against GI and other evening-expressed genes can largely account for temperature compensation in wild-type plants and the temperature-specific phenotypes of gi mutants.