22 resultados para Model-based geostatistics
Resumo:
Minimum/maximum autocorrelation factor (MAF) is a suitable algorithm for orthogonalization of a vector random field. Orthogonalization avoids the use of multivariate geostatistics during joint stochastic modeling of geological attributes. This manuscript demonstrates in a practical way that computation of MAF is the same as discriminant analysis of the nested structures. Mathematica software is used to illustrate MAF calculations from a linear model of coregionalization (LMC) model. The limitation of two nested structures in the LMC for MAF is also discussed and linked to the effects of anisotropy and support. The analysis elucidates the matrix properties behind the approach and clarifies relationships that may be useful for model-based approaches. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
We examine the event statistics obtained from two differing simplified models for earthquake faults. The first model is a reproduction of the Block-Slider model of Carlson et al. (1991), a model often employed in seismicity studies. The second model is an elastodynamic fault model based upon the Lattice Solid Model (LSM) of Mora and Place (1994). We performed simulations in which the fault length was varied in each model and generated synthetic catalogs of event sizes and times. From these catalogs, we constructed interval event size distributions and inter-event time distributions. The larger, localised events in the Block-Slider model displayed the same scaling behaviour as events in the LSM however the distribution of inter-event times was markedly different. The analysis of both event size and inter-event time statistics is an effective method for comparative studies of differing simplified models for earthquake faults.
Resumo:
Background Reliable information on causes of death is a fundamental component of health development strategies, yet globally only about one-third of countries have access to such information. For countries currently without adequate mortality reporting systems there are useful models other than resource-intensive population-wide medical certification. Sample-based mortality surveillance is one such approach. This paper provides methods for addressing appropriate sample size considerations in relation to mortality surveillance, with particular reference to situations in which prior information on mortality is lacking. Methods The feasibility of model-based approaches for predicting the expected mortality structure and cause composition is demonstrated for populations in which only limited empirical data is available. An algorithm approach is then provided to derive the minimum person-years of observation needed to generate robust estimates for the rarest cause of interest in three hypothetical populations, each representing different levels of health development. Results Modelled life expectancies at birth and cause of death structures were within expected ranges based on published estimates for countries at comparable levels of health development. Total person-years of observation required in each population could be more than halved by limiting the set of age, sex, and cause groups regarded as 'of interest'. Discussion The methods proposed are consistent with the philosophy of establishing priorities across broad clusters of causes for which the public health response implications are similar. The examples provided illustrate the options available when considering the design of mortality surveillance for population health monitoring purposes.
Resumo:
Motivation: The clustering of gene profiles across some experimental conditions of interest contributes significantly to the elucidation of unknown gene function, the validation of gene discoveries and the interpretation of biological processes. However, this clustering problem is not straightforward as the profiles of the genes are not all independently distributed and the expression levels may have been obtained from an experimental design involving replicated arrays. Ignoring the dependence between the gene profiles and the structure of the replicated data can result in important sources of variability in the experiments being overlooked in the analysis, with the consequent possibility of misleading inferences being made. We propose a random-effects model that provides a unified approach to the clustering of genes with correlated expression levels measured in a wide variety of experimental situations. Our model is an extension of the normal mixture model to account for the correlations between the gene profiles and to enable covariate information to be incorporated into the clustering process. Hence the model is applicable to longitudinal studies with or without replication, for example, time-course experiments by using time as a covariate, and to cross-sectional experiments by using categorical covariates to represent the different experimental classes. Results: We show that our random-effects model can be fitted by maximum likelihood via the EM algorithm for which the E(expectation) and M(maximization) steps can be implemented in closed form. Hence our model can be fitted deterministically without the need for time-consuming Monte Carlo approximations. The effectiveness of our model-based procedure for the clustering of correlated gene profiles is demonstrated on three real datasets, representing typical microarray experimental designs, covering time-course, repeated-measurement and cross-sectional data. In these examples, relevant clusters of the genes are obtained, which are supported by existing gene-function annotation. A synthetic dataset is considered too.
Resumo:
The ‘leading coordinate’ approach to computing an approximate reaction pathway, with subsequent determination of the true minimum energy profile, is applied to a two-proton chain transfer model based on the chromophore and its surrounding moieties within the green fluorescent protein (GFP). Using an ab initio quantum chemical method, a number of different relaxed energy profiles are found for several plausible guesses at leading coordinates. The results obtained for different trial leading coordinates are rationalized through the calculation of a two-dimensional relaxed potential energy surface (PES) for the system. Analysis of the 2-D relaxed PES reveals that two of the trial pathways are entirely spurious, while two others contain useful information and can be used to furnish starting points for successful saddle-point searches. Implications for selection of trial leading coordinates in this class of proton chain transfer reactions are discussed, and a simple diagnostic function is proposed for revealing whether or not a relaxed pathway based on a trial leading coordinate is likely to furnish useful information.
Resumo:
Many developing south-east Asian governments are not capturing full rent from domestic forest logging operations. Such rent losses are commonly related to institutional failures, where informal institutions tend to dominate the control of forestry activity in spite of weakly enforced regulations. Our model is an attempt to add a new dimension to thinking about deforestation. We present a simple conceptual model, based on individual decisions rather than social or forest planning, which includes the human dynamics of participation in informal activity and the relatively slower ecological dynamics of changes in forest resources. We demonstrate how incumbent informal logging operations can be persistent, and that any spending aimed at replacing the informal institutions can only be successful if it pushes institutional settings past some threshold. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Model transformations are an integral part of model-driven development. Incremental updates are a key execution scenario for transformations in model-based systems, and are especially important for the evolution of such systems. This paper presents a strategy for the incremental maintenance of declarative, rule-based transformation executions. The strategy involves recording dependencies of the transformation execution on information from source models and from the transformation definition. Changes to the source models or the transformation itself can then be directly mapped to their effects on transformation execution, allowing changes to target models to be computed efficiently. This particular approach has many benefits. It supports changes to both source models and transformation definitions, it can be applied to incomplete transformation executions, and a priori knowledge of volatility can be used to further increase the efficiency of change propagation.