65 resultados para Model-Based Design
Resumo:
Mixture models implemented via the expectation-maximization (EM) algorithm are being increasingly used in a wide range of problems in pattern recognition such as image segmentation. However, the EM algorithm requires considerable computational time in its application to huge data sets such as a three-dimensional magnetic resonance (MR) image of over 10 million voxels. Recently, it was shown that a sparse, incremental version of the EM algorithm could improve its rate of convergence. In this paper, we show how this modified EM algorithm can be speeded up further by adopting a multiresolution kd-tree structure in performing the E-step. The proposed algorithm outperforms some other variants of the EM algorithm for segmenting MR images of the human brain. (C) 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
In this paper we present an algorithm as the combination of a low level morphological operation and model based Global Circular Shortest Path scheme to explore the segmentation of the Right Ventricle. Traditional morphological operations were employed to obtain the region of interest, and adjust it to generate a mask. The image cropped by the mask is then partitioned into a few overlapping regions. Global Circular Shortest Path algorithm is then applied to extract the contour from each partition. The final step is to re-assemble the partitions to create the whole contour. The technique is deemed quite reliable and robust, as this is illustrated by a very good agreement between the extracted contour and the expert manual drawing output.
Resumo:
A method and a corresponding tool is described which assist design recovery and program understanding by recognising instances of design patterns semi-automatically. The approach taken is specifically designed to overcome the existing scalability problems caused by many design and implementation variants of design pattern instances. Our approach is based on a new recognition algorithm which works incrementally rather than trying to analyse a possibly large software system in one pass without any human intervention. The new algorithm exploits domain and context knowledge given by a reverse engineer and by a special underlying data structure, namely a special form of an annotated abstract syntax graph. A comparative and quantitative evaluation of applying the approach to the Java AWT and JGL libraries is also given.
Resumo:
Background Reliable information on causes of death is a fundamental component of health development strategies, yet globally only about one-third of countries have access to such information. For countries currently without adequate mortality reporting systems there are useful models other than resource-intensive population-wide medical certification. Sample-based mortality surveillance is one such approach. This paper provides methods for addressing appropriate sample size considerations in relation to mortality surveillance, with particular reference to situations in which prior information on mortality is lacking. Methods The feasibility of model-based approaches for predicting the expected mortality structure and cause composition is demonstrated for populations in which only limited empirical data is available. An algorithm approach is then provided to derive the minimum person-years of observation needed to generate robust estimates for the rarest cause of interest in three hypothetical populations, each representing different levels of health development. Results Modelled life expectancies at birth and cause of death structures were within expected ranges based on published estimates for countries at comparable levels of health development. Total person-years of observation required in each population could be more than halved by limiting the set of age, sex, and cause groups regarded as 'of interest'. Discussion The methods proposed are consistent with the philosophy of establishing priorities across broad clusters of causes for which the public health response implications are similar. The examples provided illustrate the options available when considering the design of mortality surveillance for population health monitoring purposes.
Resumo:
Experimental data for E. coli debris size reduction during high-pressure homogenisation at 55 MPa are presented. A mathematical model based on grinding theory is developed to describe the data. The model is based on first-order breakage and compensation conditions. It does not require any assumption of a specified distribution for debris size and can be used given information on the initial size distribution of whole cells and the disruption efficiency during homogenisation. The number of homogeniser passes is incorporated into the model and used to describe the size reduction of non-induced stationary and induced E. coil cells during homogenisation. Regressing the results to the model equations gave an excellent fit to experimental data ( > 98.7% of variance explained for both fermentations), confirming the model's potential for predicting size reduction during high-pressure homogenisation. This study provides a means to optimise both homogenisation and disc-stack centrifugation conditions for recombinant product recovery. (C) 1997 Elsevier Science Ltd.
Resumo:
Loss of magnetic medium solids from dense medium circuits is a substantial contributor to operating cost. Much of this loss is by way of wet drum magnetic separator effluent. A model of the separator would be useful for process design, optimisation and control. A review of the literature established that although various rules of thumb exist, largely based on empirical or anecdotal evidence, there is no model of magnetics recovery in a wet drum magnetic separator which includes as inputs all significant machine and operating variables. A series of trials, in both factorial experiments and in single variable experiments, was therefore carried out using a purpose built rig which featured a small industrial scale (700 mm lip length, 900 mm diameter) wet drum magnetic separator. A substantial data set of 191 trials was generated in the work. The results of the factorial experiments were used to identify the variables having a significant effect on magnetics recovery. Observations carried out as an adjunct to this work, as well as magnetic theory, suggests that the capture of magnetic particles in the wet drum magnetic separator is by a flocculation process. Such a process should be defined by a flocculation rate and a flocculation time; the latter being defined by the volumetric flowrate and the volume within the separation zone. A model based on this concept and containing adjustable parameters was developed. This model was then fitted to a randomly chosen 80% of the data, and validated by application to the remaining 20%. The model is shown to provide a satisfactory fit to the data over three orders of magnitude of magnetics loss. (C) 2003 Elsevier Science BY. All rights reserved.
Resumo:
West Nile Virus (WNV) is a mosquito-borne flavivirus with a rapidly expanding global distribution. Infection causes severe neurological disease and fatalities in both human and animal hosts. The West Nile viral protease (NS2B-NS3) is essential for post-translational processing in host-infected cells of a viral polypeptide precursor into structural and functional viral proteins, and its inhibition could represent a potential treatment for viral infections. This article describes the design, expression, and enzymatic characterization of a catalytically active recombinant WNV protease, consisting of a 40-residue component of cofactor NS2B tethered via a noncleavable nonapeptide (G(4)SG(4)) to the N-terminal 184 residues of NS3. A chromogenic assay using synthetic para-nitroanilide (pNA) hexapeptide substrates was used to identify optimal enzyme-processing conditions (pH 9.5, I < 0.1 M, 30% glycerol, 1 mM CHAPS), preferred substrate cleavage sites, and the first competitive inhibitor (Ac-FASGKR- H, IC50 &SIM; 1 μM). A putative three-dimensional structure of WNV protease, created through homology modeling based on the crystal structures of Dengue-2 and Hepatitis C NS3 viral proteases, provides some valuable insights for structure-based design of potent and selective inhibitors of WNV protease.
Resumo:
This paper describes a biventricular model, which couples the electrical and mechanical properties of the heart, and computer simulations of ventricular wall motion and deformation by means of a biventricular model. In the constructed electromechanical model, the mechanical analysis was based on composite material theory and the finite-element method; the propagation of electrical excitation was simulated using an electrical heart model, and the resulting active forces were used to calculate ventricular wall motion. Regional deformation and Lagrangian strain tensors were calculated during the systole phase. Displacements, minimum principal strains and torsion angle were used to describe the motion of the two ventricles. The simulations showed that during the period of systole, (1) the right ventricular free wall moves towards the septum, and at the same time, the base and middle of the free wall move towards the apex, which reduces the volume of the right ventricle; the minimum principle strain (E3) is largest at the apex, then at the middle of the free wall and its direction is in the approximate direction of the epicardial muscle fibres; (2) the base and middle of the left ventricular free wall move towards the apex and the apex remains almost static; the torsion angle is largest at the apex; the minimum principle strain E3 is largest at the apex and its direction on the surface of the middle wall of the left ventricle is roughly in the fibre orientation. These results are in good accordance with results obtained from MR tagging images reported in the literature. This study suggests that such an electromechanical biventricular model has the potential to be used to assess the mechanical function of the two ventricles, and also could improve the accuracy ECG simulation when it is used in heart torso model-based body surface potential simulation studies.