65 resultados para Microarray electrodes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have initiated an EST sequencing project to survey a range of expressed sequences from green fruit, yellow fruit, roots, and root-knot nematode infected root/gall tissues. In total, 5681 edited EST sequences were retrieved. Clone redundancy was high in the fruit libraries, with the combined fruit 1548 clone sequences clustering into just 634 contigs comprising 191 consensus sequences and 443 singletons. Half of all fruit EST clone sequences clustered within approximately 14 and 9% of contigs from green unripe and yellow ripe libraries respectively, indicating that a small subset of genes dominates the majority of the transcriptome. The root and root/gall libraries had lower levels of redundancy than the fruit libraries. Half of the root/gall ESTs clustered within approximately 40% of all contigs, indicating the roots possess a more complex transcriptome. Contig assembly and cluster analysis revealed major differences in the abundant gene sequences expressed between the unripe green and the ripe yellow fruit tissues, or gene sequences expressed between the weeks 1-4 and weeks 5-10 nematode infected gall vascular cylinder libraries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microarrays are used to monitor the expression of thousands of gene transcripts. This technique requires high-quality RNA, which can be extracted from a variety sources, including autopsy brain tissue. Most nucleic acids and proteins are reasonably stable post mortem. However, their abundance and integrity can exhibit marked intraand inter-subject variability, so care must be taken when comparisons between case-groups are made. We will review issues associated with the sampling of RNA from autopsy brain tissue in relation to various ante- and post-mortem factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective:To investigate the effects of bilateral, surgically induced functional inhibition of the subthalamic nucleus (STN) on general language, high level linguistic abilities, and semantic processing skills in a group of patients with Parkinson’s disease. Methods:Comprehensive linguistic profiles were obtained up to one month before and three months after bilateral implantation of electrodes in the STN during active deep brain stimulation (DBS) in five subjects with Parkinson’s disease (mean age, 63.2 years). Equivalent linguistic profiles were generated over a three month period for a non-surgical control cohort of 16 subjects with Parkinson’s disease (NSPD) (mean age, 64.4 years). Education and disease duration were similar in the two groups. Initial assessment and three month follow up performance profiles were compared within subjects by paired t tests. Reliability change indices (RCI), representing clinically significant alterations in performance over time, were calculated for each of the assessment scores achieved by the five STN-DBS cases and the 16 NSPD controls, relative to performance variability within a group of 16 non-neurologically impaired adults (mean age, 61.9 years). Proportions of reliable change were then compared between the STN-DBS and NSPD groups. Results:Paired comparisons within the STN-DBS group showed prolonged postoperative semantic processing reaction times for a range of word types coded for meanings and meaning relatedness. Case by case analyses of reliable change across language assessments and groups revealed differences in proportions of change over time within the STN-DBS and NSPD groups in the domains of high level linguistics and semantic processing. Specifically, when compared with the NSPD group, the STN-DBS group showed a proportionally significant (p

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to explore the potential advantages, both theoretical and applied, of preserving low-frequency acoustic hearing in cochlear implant patients. Several hypotheses are presented that predict that residual low-frequency acoustic hearing along with electric stimulation for high frequencies will provide an advantage over traditional long-electrode cochlear implants for the recognition of speech in competing backgrounds. A simulation experiment in normal-hearing subjects demonstrated a clear advantage for preserving low-frequency residual acoustic hearing for speech recognition in a background of other talkers, but not in steady noise. Three subjects with an implanted "short-electrode" cochlear implant and preserved low-frequency acoustic hearing were also tested on speech recognition in the same competing backgrounds and compared to a larger group of traditional cochlear implant users. Each of the three short-electrode subjects performed better than any of the traditional long-electrode implant subjects for speech recognition in a background of other talkers, but not in steady noise, in general agreement with the simulation studies. When compared to a subgroup of traditional implant users matched according to speech recognition ability in quiet, the short-electrode patients showed a 9-dB advantage in the multitalker background. These experiments provide strong preliminary support for retaining residual low-frequency acoustic hearing in cochlear implant patients. The results are consistent with the idea that better perception of voice pitch, which can aid in separating voices in a background of other talkers, was responsible for this advantage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brain electrical activity related to working memory was recorded at 15 scalp electrodes during a visuospatial delayed response task. Participants (N = 18) touched the remembered position of a target on a computer screen after either a 1 or 8 sec delay. These memory trials were compared to sensory trials in which the target remained present throughout the delay and response periods. Distracter stimuli identical to the target were briefly presented during the delay on 30% of trials. Responses were less accurate in memory than sensory trials, especially after the long delay. During the delay slow potentials developed that were significantly more negative in memory than sensory trials. The difference between memory and sensory trials was greater at anterior than posterior electrodes. On trials with distracters, the slow potentials generated by memory trials showed further enhancement of negativity whereas there were minimal effects on accuracy of performance. The results provide evidence that engagement of visuospatial working memory generates slow wave negativity with a timing and distribution consistent with frontal activation. Enhanced brain activity associated with working memory is required to maintain performance in the presence of distraction. © 1997 by the Massachusetts Institute of Technology