52 resultados para Membrane reactors
Resumo:
Confocal scanning laser microscopic observations were made on live chloroplasts in intact cells and on mechanically isolated, intact chloroplasts. Chlorophyll fluorescence was imaged to observe thylakoid membrane architecture. C-3 plant species studied included Spinacia oleracea L., Spathiphyllum sp. Schott, cv. 'Mauna Loa', and Pisum sativum L. C-4 plants were also investigated: Saccharum officinarum L., Sorghum bicolor L. Moench, Zea mays L. and Panicum miliaceum L. Some Spinacia chloroplasts were treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) to enhance or sodium dithionite (SD) to reduce the photosystem II fluorescence signal. Confocal microscopy images of C-3 chloroplasts differed from electron microscopy pictures because they showed discrete spots of bright fluorescence with black regions between them. There was no evidence of fluorescence from stroma thylakoids. The thylakoid membrane system at times appeared to be string-like, with brightly fluorescing grana lined up like beads. C-4 bundle sheath chloroplasts were imaged from three different types of C-4 plants. Saccharum and Sorghum bundle sheath chloroplasts showed homogeneous fluorescence and were much dimmer than mesophyll chloroplasts. Zea had rudimentary grana, and dim, homogeneous intergrana fluorescence was visualised. Panicum contained thylakoids similar in appearance and string-like arrangement to mesophyll chloroplasts. Isolated Pisum chloroplasts, treated with a drop of 5 mM MgCl2 showed a thylakoid membrane system which appeared to be unravelling. Spongy mesophyll chloroplasts of Spinacia treated with 5 mM sodium dithionite showed a granal thylakoid system with distinct regions of no fluorescence. A time-series experiment provided evidence of dynamic membrane rearrangements over a period of half an hour.
Resumo:
Recent structural studies of proteins mediating membrane fusion reveal intriguing similarities between diverse viral and mammalian systems. Particularly striking is the close similarity between the transmembrane envelope glycoproteins from the retrovirus HTLV-1 and the filovirus Ebola. These similarities suggest similar mechanisms of membrane fusion. The model that fits most currently available data suggests fusion activation in viral systems is driven by a symmetrical conformational change triggered by an activation event such as receptor binding or a pH change. The mammalian vesicle fusion mediated by the SNARE protein complex most likely occurs by a similar mechanism but without symmetry constraints.
Resumo:
In contrast to other mammalian defensins, rhesus theta defensin-1 (RTD-1) is composed of just 18 amino acids with the backbone cyclized through peptide bonds. Antibacterial activities of both the native cyclic peptide and a linear form were examined, showing that the cyclic form was 3-fold more active than the open chain analogue, oRTD-1, although both peptides adopt very similar structures in water. It was suggested that the additional charges at the termini of oRTD-1 are the cause for its lower antimicrobial activity. Therefore, we studied the interaction of both peptides with membrane mimics composed of zwitterionic (PC) and negatively charged (PG) phospholipids, major lipid components of erythrocyte and bacterial cell membranes, respectively. Microcalorimetry showed that RTD-1 and oRTD-1 did not affect the phase behavior of PC liposomes, while in PG liposomes both peptides induced new phase transitions above the chain melting transition of the lipid. The shape and fraction differed between both peptides, depending also on their concentration, which will be discussed in terms of their antimicrobial activity.
Resumo:
The membrane-proximal cytoplasmic region of cytokine receptors (CRs) is highly conserved and essential for receptor activation. In particular this region is essential for the activation of members of the Janus family of protein kinases (JAK) which results in initiation of receptor signaling. We have examined the sequence of this region in a number of CR signaling and accessory subunits with a view to better delineating motifs that play an important role in initiating receptor activity. Here, we have delineated two distinct proline-rich motifs in the membrane-proximal domains of cytokine receptors. Their configuration and distribution among CR subunits strongly suggest a model in which the two motifs act in a concerted manner to induce full receptor and JAK activation. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The environmental fate of polycyclic aromatic hydrocarbons (PAHs) in soils is motivated by their wide distribution, high persistence, and potentially deleterious effect on human health. Polycyclic aromatic hydrocarbons constitute the largest group of environmental contaminants released in the environment. Therefore, the potential biodegradation of these compounds is of vital importance. A biocarrier suitable for the colonization by micro-organisms for the purpose of purifying soil contaminated by polycyclic aromatic hydrocarbons was developed. The optimized composition of the biocarrier was polyvinyl alcohol (PVA) 10%, sodium alginate (SA) 0.5%, and powdered activated carbon (PAC) 5%. There was no observable cytotoxicity of biocarriers on immobilized cells and a viable cell population of 1.86 x 10(10) g(-1) was maintained for immobilized bacterium. Biocarriers made from chemical methods had a higher biodegradation but lower mechanical strengths. Immobilized bacterium Zoogloea sp. had an ideal capability of biodegradation for phenanthrene and pyrene over a relative wide concentration range. The study results showed that the biodegradation of phenanthrene and pyrene reached 87.0 and 75.4%, respectively, by using the optimal immobilized method of Zoogloea sp. cultivated in a sterilized soil. Immobilized Zoogloea sp. was found to be effective for biodegrading the soil contaminated with phenanthrene and pyrene. Even in natural (unsterilized) soil, the biodegradation of phenanthrene and pyrene using immobilized Zoogloea sp. reached 85.0 and 67.1%, respectively, after 168 h of cultivation, more than twice that achieved if the cells were not immobilized on the biocarrier. Therefore, the immobilization technology enhanced the competitive ability of introduced micro-organisms and represents an effective method for the biotreatment of soil contaminated with phenanthrene and pyrene.
Resumo:
We have observed previously that Ca2+ pump-mediated Ca2+ efflux is elevated in cultured aortic smooth muscle cells from spontaneously hypertensive rats compared to those from Wistar-Kyoto rat controls. The objective of this work was to determine if these strains differ in mRNA levels for the PMCA1 isoform of the plasma membrane Ca2+-ATPase and the SERCA2 isoform of the sarcoplasmic reticulum Ca2+-ATPase. mRNA levels were compared in cultured aortic smooth muscle cells from 10-week-old male rats. PMCA1 and SERCA2 mRNA levels were elevated in SHR compared to WKY. Angiotensin II increased the level of PMCA1 and SERCA2 mRNA in both strains. These studies provide further evidence for alterered Ca2+ homeostasis in hypertension at the level of Ca2+ transporting ATPases in the spontaneously hypertensive rat model. These data are also consistent with the hypothesis that the expression of these two Ca2+ pumps may be linked. (C) 1997 Academic Press
Resumo:
A distinct type of cellular organization was found in two species of the planctomycete genus Pirellula, Pirellula marina and Pirellula staleyi. Both species possess two distinct regions within the cell which are separated by a single membrane. The major region of the cell, the pirellulosome, contains the fibrillar condensed nucleoid. The other area, the polar cap region, forms a continuous layer surrounding the entire pirellulosome and displays a cap of asymmetrically distributed material at one cell pole. Immuno- and cytochemical-labelling of P. marina demonstrated that DNA is located exclusively within the pirellulosome; cell RNA is concentrated in the pirellulosome, with some RNA also located in the polar cap region.
Resumo:
The gene encoding the large conductance mechanosensitive ion channel (MscL) of Escherichia coli and several deletion mutants of mscL were cloned under the control of the T7 RNA polymerase promoter. Transformation of these constructs into an E. coli strain carrying an inducible T7 RNA polymerase gene allowed the specific production and labelling of MscL with [S-35]methionine. Preparation of membrane fractions of E. coli cells by sucrose gradient centrifugation indicated that the radiolabelled MscL was present in the inner cytoplasmic membrane in agreement with results of several studies. However, treatment of the labelled cells and cell membrane vesicles with various cross-linkers resulted in the majority of labelled protein migrating as a monomer with a small proportion of molecules (approximate to 25%) migrating as dimers and higher order multimers. This result is in contrast with a finding of a study suggesting that the channel exclusively forms hexamers in the cell membrane off. coli (1) and therefore may have profound implication for the activation and/or ''multimerization'' of the channel by mechanical stress exerted to the membrane. In addition, from the specific activity of the radiolabelled protein and the amount of protein in the cytoplasmic membrane fraction we estimated the number of MscL ion channels expressed under these conditions to be approximately 50 channels per single bacterium. (C) 1997 Academic Press.
Resumo:
Exposure of insulin-sensitive tissues to free fatty acids can impair glucose disposal through inhibition of carbohydrate oxidation and glucose transport. However, certain fatty acids and their derivatives can also act as endogenous ligands for peroxisome proliferator-activated receptor gamma (PPARgamma ), a nuclear receptor that positively modulates insulin sensitivity. To clarify the effects of externally delivered fatty acids on glucose uptake in an insulin-responsive cell type, we systematically examined the effects of a range of fatty acids on glucose uptake in 3T3-L1 adipocytes. Of the fatty acids examined, arachidonic acid (AA) had the greatest positive effects, significantly increasing basal and insulin-stimulated glucose uptake by 1.8- and 2-fold, respectively, with effects being maximal at 4 h at which time membrane phospholipid content of AA was markedly increased. The effects of AA were sensitive to the inhibition of protein synthesis but were unrelated to changes in membrane fluidity. AA had no effect on total cellular levels of glucose transporters, but significantly increased levels of GLUT1 and GLUT4 at the plasma membrane. While the effects of AA were insensitive to cyclooxygenase inhibition, the lipoxygenase inhibitor, nordihydroguaiaretic acid, substantially blocked the AA effect on basal glucose uptake. Furthermore, adenoviral expression of a dominant-negative PPARgamma mutant attenuated the AA potentiation of basal glucose uptake. Thus, AA potentiates basal and insulin-stimulated glucose uptake in 3T3-L1 adipocytes by a cyclooxygenase-independent mechanism that increases the levels of both GLUT1 and GLUT4 at the plasma membrane. These effects are at least partly dependent on de novo protein synthesis, an intact lipoxygenase pathway and the activation of PPARgamma with these pathways having a greater role in the absence than in the presence of insulin.
Resumo:
The plasma membrane Ca2+ pump is a key regulator of cytosolic free Ca2+. Recent studies have demonstrated the dynamic expression of the plasma membrane Ca2+ pump in a variety of cell types. Furthermore, alterations in plasma membrane calcium pump activity have now been implicated in human disease. In this study, the development of a technique to quantitatively assess mRNA expression of the human plasma membrane Ca2+ ATPase (PMCA1) isoform of the plasma membrane Ca2+ pump, using a real-time reverse transcriptase-polymerase chain reaction (real-time RT-PCR) assay in a human breast epithelial cell line (MCF-7) is described. The sequences of the PMCA1 primers and probe for real-time RT-PCR are presented. The results also indicate that PMCA1 mRNA can be normalized to both 18S ribosomal RNA (18S rRNA) and human glyceraldehyde-3-phosphate dehydrogenase (hGAPDH) in MCF-7 cells. Real-time RT-PCR will be most useful in assessing PMCA1 mRNA expression in cases where only low amounts of RNA are available and/or when numerous samples must be assessed simultaneously. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
When smooth muscle cells are enzyme-dispersed from tissues they lose their original filament architecture and extracellular matrix surrounds. They then reorganize their structural proteins to accommodate a 2-D growth environment when seeded onto culture dishes. The aim of the present study was to determine the expression and reorganization of the structural proteins in rabbit aortic smooth muscle cells seeded into 3-D collagen gel and Matrigel (a basement membrane matrix). It was shown that smooth muscle cells seeded in both gels gradually reorganize their structural proteins into an architecture similar to that of their in vivo counterparts. At the same time, a gradual decrease in levels of smooth muscle-specific contractile proteins (mainly smooth muscle myosin heavy chain-2) and an increase in p-nonmuscle actin occur, independent of both cell growth and extracellular matrix components. Thus, smooth muscle cells in 3-D extracellular matrix culture and in vivo have a similar filament architecture in which the contractile proteins such as actin, myosin, and alpha -actinin are organized into longitudinally arranged myofibrils and the vimentin-containing intermediate filaments form a meshed cytoskeletal network, However, the myofibrils reorganized in vitro contain less smooth muscle-specific and more nonmuscle contractile proteins. (C) 2001 Academic Press.