86 resultados para Medical Informatics Computing


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rationale and aims 'OTseeker' is an online database of randomized controlled trials (RCTs) and systematic reviews relevant to occupational therapy. RCTs are critically appraised and rated for quality using the 'PEDro' scale. We aimed to investigate the inter-rater reliability of the PEDro scale before and after revising rating guidelines. Methods In study 1, five raters scored 100 RCTs using the original PEDro scale guidelines. In study 2, two raters scored 40 different RCTs using revised guidelines. All RCTs were randomly selected from the OTseeker database. Reliability was calculated using Kappa and intraclass correlation coefficients [ICC (model 2,1)]. Results Inter-rater reliability was 'good to excellent' in the first study (Kappas >= 0.53; ICCs >= 0.71). After revising the rating guidelines, the reliability levels were equivalent or higher to those previously obtained (Kappas >= 0.53; ICCs >= 0.89), except for the item, 'groups similar at baseline', which still had moderate reliability (Kappa = 0.53). In study 2, two PEDro scale items, which had their definitions revised, 'less than 15% dropout' and 'point measures and variability', showed higher reliability. In both studies, the PEDro items with the lowest reliability were 'groups similar at baseline' (Kappas = 0.53), 'less than 15% dropout' (Kappas

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To account for the preponderance of zero counts and simultaneous correlation of observations, a class of zero-inflated Poisson mixed regression models is applicable for accommodating the within-cluster dependence. In this paper, a score test for zero-inflation is developed for assessing correlated count data with excess zeros. The sampling distribution and the power of the test statistic are evaluated by simulation studies. The results show that the test statistic performs satisfactorily under a wide range of conditions. The test procedure is further illustrated using a data set on recurrent urinary tract infections. Copyright (c) 2005 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: Inpatient length of stay (LOS) is an important measure of hospital activity, health care resource consumption, and patient acuity. This research work aims at developing an incremental expectation maximization (EM) based learning approach on mixture of experts (ME) system for on-line prediction of LOS. The use of a batchmode learning process in most existing artificial neural networks to predict LOS is unrealistic, as the data become available over time and their pattern change dynamically. In contrast, an on-line process is capable of providing an output whenever a new datum becomes available. This on-the-spot information is therefore more useful and practical for making decisions, especially when one deals with a tremendous amount of data. Methods and material: The proposed approach is illustrated using a real example of gastroenteritis LOS data. The data set was extracted from a retrospective cohort study on all infants born in 1995-1997 and their subsequent admissions for gastroenteritis. The total number of admissions in this data set was n = 692. Linked hospitalization records of the cohort were retrieved retrospectively to derive the outcome measure, patient demographics, and associated co-morbidities information. A comparative study of the incremental learning and the batch-mode learning algorithms is considered. The performances of the learning algorithms are compared based on the mean absolute difference (MAD) between the predictions and the actual LOS, and the proportion of predictions with MAD < 1 day (Prop(MAD < 1)). The significance of the comparison is assessed through a regression analysis. Results: The incremental learning algorithm provides better on-line prediction of LOS when the system has gained sufficient training from more examples (MAD = 1.77 days and Prop(MAD < 1) = 54.3%), compared to that using the batch-mode learning. The regression analysis indicates a significant decrease of MAD (p-value = 0.063) and a significant (p-value = 0.044) increase of Prop(MAD

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objectives: In this paper, we present a unified electrodynamic heart model that permits simulations of the body surface potentials generated by the heart in motion. The inclusion of motion in the heart model significantly improves the accuracy of the simulated body surface potentials and therefore also the 12-lead ECG. Methods: The key step is to construct an electromechanical heart model. The cardiac excitation propagation is simulated by an electrical heart model, and the resulting cardiac active forces are used to calculate the ventricular wall motion based on a mechanical model. The source-field point relative position changes during heart systole and diastole. These can be obtained, and then used to calculate body surface ECG based on the electrical heart-torso model. Results: An electromechanical biventricular heart model is constructed and a standard 12-lead ECG is simulated. Compared with a simulated ECG based on the static electrical heart model, the simulated ECG based on the dynamic heart model is more accordant with a clinically recorded ECG, especially for the ST segment and T wave of a V1-V6 lead ECG. For slight-degree myocardial ischemia ECG simulation, the ST segment and T wave changes can be observed from the simulated ECG based on a dynamic heart model, while the ST segment and T wave of simulated ECG based on a static heart model is almost unchanged when compared with a normal ECG. Conclusions: This study confirms the importance of the mechanical factor in the ECG simulation. The dynamic heart model could provide more accurate ECG simulation, especially for myocardial ischemia or infarction simulation, since the main ECG changes occur at the ST segment and T wave, which correspond with cardiac systole and diastole phases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Count data with excess zeros relative to a Poisson distribution are common in many biomedical applications. A popular approach to the analysis of such data is to use a zero-inflated Poisson (ZIP) regression model. Often, because of the hierarchical Study design or the data collection procedure, zero-inflation and lack of independence may occur simultaneously, which tender the standard ZIP model inadequate. To account for the preponderance of zero counts and the inherent correlation of observations, a class of multi-level ZIP regression model with random effects is presented. Model fitting is facilitated using an expectation-maximization algorithm, whereas variance components are estimated via residual maximum likelihood estimating equations. A score test for zero-inflation is also presented. The multi-level ZIP model is then generalized to cope with a more complex correlation structure. Application to the analysis of correlated count data from a longitudinal infant feeding study illustrates the usefulness of the approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatial data mining recently emerges from a number of real applications, such as real-estate marketing, urban planning, weather forecasting, medical image analysis, road traffic accident analysis, etc. It demands for efficient solutions for many new, expensive, and complicated problems. In this paper, we investigate the problem of evaluating the top k distinguished “features” for a “cluster” based on weighted proximity relationships between the cluster and features. We measure proximity in an average fashion to address possible nonuniform data distribution in a cluster. Combining a standard multi-step paradigm with new lower and upper proximity bounds, we presented an efficient algorithm to solve the problem. The algorithm is implemented in several different modes. Our experiment results not only give a comparison among them but also illustrate the efficiency of the algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Collaborative, team-based, interprofessional approaches to patient management are becoming increasingly recognized as beneficial to health outcomes. This project aimed to develop interprofessional skills among 134 third year medical students that were of clinical educational value to the students, and through activities that directly benefited the rural health professionals in their daily work. Placements were undertaken during a six week rural clinical attachment, mainly throughout South-West Queensland. Pre- and post-placement self-report questionnaires completed by both students and health professionals were used to evaluate the project. Results showed that over 80% of the health professional group reported the medical student placements were useful. Similarly, almost 80% of medical students reported positive changes in their attitude to other health professionals from the placement, and 91% indicated they had derived clinical educational benefit from their interprofessional activity. Despite difficulties due to poor communication between the various parties involved, the project proved successful in improving medical students' skills, knowledge and perceptions concerning interprofessional practice, through a placement and educational project which delivered practical benefits to rural health professionals and rural communities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conferences that deliver interactive sessions designed to enhance physician participation, such as role play, small discussion groups, workshops, hands-on training, problem- or case-based learning and individualised training sessions, are effective for physician education.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate in detail the effects of a QND vibrational number measurement made on single ions in a recently proposed measurement scheme for the vibrational state of a register of ions in a linear rf trap [C. D'HELON and G. J. MILBURN, Phys Rev. A 54, 5141 (1996)]. The performance of a measurement shows some interesting patterns which are closely related to searching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expokit provides a set of routines aimed at computing matrix exponentials. More precisely, it computes either a small matrix exponential in full, the action of a large sparse matrix exponential on an operand vector, or the solution of a system of linear ODEs with constant inhomogeneity. The backbone of the sparse routines consists of matrix-free Krylov subspace projection methods (Arnoldi and Lanczos processes), and that is why the toolkit is capable of coping with sparse matrices of large dimension. The software handles real and complex matrices and provides specific routines for symmetric and Hermitian matrices. The computation of matrix exponentials is a numerical issue of critical importance in the area of Markov chains and furthermore, the computed solution is subject to probabilistic constraints. In addition to addressing general matrix exponentials, a distinct attention is assigned to the computation of transient states of Markov chains.