41 resultados para Maxwell-Chern-Simons
Resumo:
The present research investigated attentional blink startle modulation at lead intervals of 60, 240 and 3500 ms. Letters printed in Gothic or standard fonts, which differed in rated interest, but not valence, served as lead stimuli. Experiment I established that identifying letters as vowels/consonants took longer than reading the letters and that performance in both tasks was slower if letters were printed in Gothic font. In Experiment 2, acoustic blink eliciting stimuli were presented 60, 240 and 3500 ms after onset of the letters in Gothic and in standard font and during intertrial intervals. Half the participants (Group Task) were asked to identify the letters as vowels/consonants whereas the others (Group No-Task) did not perform a task. Relative to control responses, blinks during letters were facilitated at 60 and 3500 ms lead intervals and inhibited at the 240 ms lead interval for both conditions in Group Task. Differences in blink modulation across lead intervals were found in Group No-Task only during Gothic letters with blinks at the 3500 ms lead interval facilitated relative to control blinks. The present results confirm previous findings indicating that attentional processes can modulate startle at very short lead intervals. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The structures of mixed Langmuir (floating) monolayers and Langmuir-Blodgett (LB) films of a phenanthroline-porphyrin with cadmium arachidate (PhenPor + CdAr) have been investigated by synchrotron X-ray grazing incidence diffraction (GIXD) and specular X-ray reflectivity (SXR). GIXD measurements of the floating monolayers showed only one peak, arising from the CdAr domains in the films, at a scattering angle of 21.5 degrees. This is consistent with a hexagonal structure (alpha = 4.77 Angstrom). The correlation length in these domains is 250 Angstrom. GMD measurements of the LB films, however, show two sets of diffraction features: one arises from CdAr domains with a rectangular in-plane structure (alpha = 7.44 Angstrom and b = 4.90 Angstrom) and a correlation length of 85 Angstrom; the other is from porphyrin domains with an oblique in-plane structure (alpha (p) 15.2 Angstrom, b(p) = 8.86 Angstrom, and gamma (p) = 80 degrees) and a correlation length of 105 Angstrom. These dimensions are consistent with the surface pressure-area isotherm measurements and indicate that the two components are immiscible. The thickness of the bilayer is 57 Angstrom, and there is no correlation between the bilayers. Introduction of a trigger compound does not alter the structure of the films but slightly increases the bilayer thickness. The SXR measurements of the floating monolayers also support the suggested immiscibility of the two components in the films.
Resumo:
A generalised model for the prediction of single char particle gasification dynamics, accounting for multi-component mass transfer with chemical reaction, heat transfer, as well as structure evolution and peripheral fragmentation is developed in this paper. Maxwell-Stefan analysis is uniquely applied to both micro and macropores within the framework of the dusty-gas model to account for the bidisperse nature of the char, which differs significantly from the conventional models that are based on a single pore type. The peripheral fragmentation and random-pore correlation incorporated into the model enable prediction of structure/reactivity relationships. The occurrence of chemical reaction within the boundary layer reported by Biggs and Agarwal (Chem. Eng. Sci. 52 (1997) 941) has been confirmed through an analysis of CO/CO2 product ratio obtained from model simulations. However, it is also quantitatively observed that the significance of boundary layer reaction reduces notably with the reduction of oxygen concentration in the flue gas, operational pressure and film thickness. Computations have also shown that in the presence of diffusional gradients peripheral fragmentation occurs in the early stages on the surface, after which conversion quickens significantly due to small particle size. Results of the early commencement of peripheral fragmentation at relatively low overall conversion obtained from a large number of simulations agree well with experimental observations reported by Feng and Bhatia (Energy & Fuels 14 (2000) 297). Comprehensive analysis of simulation results is carried out based on well accepted physical principles to rationalise model prediction. (C) 2001 Elsevier Science Ltd. AH rights reserved.
Resumo:
The present paper addresses two major concerns that were identified when developing neural network based prediction models and which can limit their wider applicability in the industry. The first problem is that it appears neural network models are not readily available to a corrosion engineer. Therefore the first part of this paper describes a neural network model of CO2 corrosion which was created using a standard commercial software package and simple modelling strategies. It was found that such a model was able to capture practically all of the trends noticed in the experimental data with acceptable accuracy. This exercise has proven that a corrosion engineer could readily develop a neural network model such as the one described below for any problem at hand, given that sufficient experimental data exist. This applies even in the cases when the understanding of the underlying processes is poor. The second problem arises from cases when all the required inputs for a model are not known or can be estimated with a limited degree of accuracy. It seems advantageous to have models that can take as input a range rather than a single value. One such model, based on the so-called Monte Carlo approach, is presented. A number of comparisons are shown which have illustrated how a corrosion engineer might use this approach to rapidly test the sensitivity of a model to the uncertainities associated with the input parameters. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Much has been written about youth crime, justice and corrections in Hong Kong in the past three decades, in particular, about the historical roots of the youth justice system, causes of juvenile delinquency, and the outcomes of different rehabilitative programmes for young offenders. However, little is known in theory, practice and policy about how community-based and custodial sentences can achieve the goals of rehabilitation and correction for young offenders. In this paper, the author analyses the purposes of penal measures with reference to the classical theories of punishment, rather than empirical data or statistics. The author argues that a community-based sentence, in many respects, performs as or more effectively than a custodial programme in achieving the various sentencing aims.
Resumo:
Relationships were examined between environmental conditions mediated by packaging and handling and the deterioration of harvested Geraldton waxflower cv. 'Fortune Cookie'. Disease severity plus flower and leaf drop caused by inoculation with Botrytis cinerea were reduced by lowering handling temperatures to 0, 5 or 5/20 degreesC alternated daily, versus 20 degreesC. They were also reduced by inhibition of ethylene action with a silver thiosulfate pulse pretreatment. Additionally, treatments that enhanced water loss, such as packing dry, keeping forced air-cooling holes open and strategic placement of extra ventilation holes may also reduce disease severity and flower plus leaf fall. Inclusion of KMnO4-based Bloomfresh ethylene scrubbing sachets in packages did not reduce disease severity or lessen flower plus leaf fall. Thus, deterioration of waxflower packaged in commercial cartons can be minimised by keeping temperatures low, packing plant material dry, use of cartons with strategically placed ventilation holes and/or pretreatment with silver thiosulfate.
Resumo:
The design of open-access elliptical cross-section magnet systems has recently come under consideration. Obtaining values for the forces generated within these unusual magnets is important to progress the designs towards feasible instruments. This paper presents a novel and flexible method for the rapid computation of forces within elliptical magnets. The method is demonstrated by the analysis of a clinical magnetic resonance imaging magnet of elliptical cross-section and open design. The analysis reveals the non-symmetric nature of the generated Maxwell forces, which are an important consideration, particularly in the design of superconducting systems.
Resumo:
New designs for force-minimized compact high-field clinical MRI magnets are described. The design method is a modified simulated annealing (SA) procedure which includes Maxwell forces in the error function to be minimized. This permits an automated force reduction in the magnet designs while controlling the overall dimensions of the system. As SA optimization requires many iterations to achieve a final design, it is important that each iteration in the procedure is rapid. We have therefore developed a rapid force calculation algorithm. Novel designs for short 3- and 4-T clinical MRI systems are presented in which force reduction has been invoked. The final designs provide large homogeneous regions and reduced stray fields in remarkable short magnets. A shielded 4-T design that is approximately 30% shorter than current designs is presented. This novel magnet generates a full 50-cm diameter homogeneous region.
Resumo:
Genetic and environmental sources of covariation among the P3(00) and online performance elicited in a delayed-response working memory task, and psychometric IQ assessed by the multidimensional aptitude battery, were examined in an adolescent twin sample. An association between frontal P3 latency and task performance (phenotypic r = -0.33; genotypic r = -0.49) was indicated, with genes (i.e. twin status) accounting for a large part of the covariation ( > 70%). In contrast, genes influencing P3 amplitude mediated only a small part (2%) of the total genetic variation in task performance. While task performance mediated 15% of the total genetic variation in IQ (phenotypic r = 0.22; genotypic r = 0.39) there was no association between P3 latency and IQ or P3 amplitude with IQ. The findings provide some insight into the inter-relationships among psychophysiological, performance and psychometric measures of cognitive ability, and provide support for a levels-of-processing genetic model of cognition where genes act on specific sub-components of cognitive processes.
Resumo:
Biometrical genetics is the science concerned with the inheritance of quantitative traits. In this review we discuss how the analytical methods of biometrical genetics are based upon simple Mendelian principles. We demonstrate how the phenotypic covariance between related individuals provides information on the relative importance of genetic and environmental factors influencing that trait, and how factors such as assortative mating, gene-environment correlation and genotype-environment interaction complicate such interpretations. Twin and adoption studies are discussed as well as their assumptions and limitations. Structural equation modeling (SEM) is introduced and we illustrate how this approach may be applied to genetic problems. In particular, we show how SEM can be used to address complicated issues such as analyzing the causes of correlation between traits or determining the direction of causation (DOC) between variables. (C) 2002 Elsevier Science B.V. All rights reserved.