181 resultados para Marine algae -- Morphology
Resumo:
A survey of bivalves from Heron Island on the Great Barrier Reef, Australia, revealed a novel digenean infection in Lioconcha castrensis (Bivalvia: Veneridae). The cercaria has oral and ventral suckers, a dorsoventrally orientated stylet embedded in the oral sucker, penetration glands, and a large tail that is inflated at its base. This morphology is broadly consistent with that of previously described gorgoderid cercariae. Partial large subunit ribosomal RNA gene (D1-D3 domains) was sequenced and aligned with sequences from other gorgoderids and related families. Phylogenetic analysis also suggests that the species belongs to the Gorgoderinae. To our knowledge, this is the first report of a gorgoderid from a marine bivalve.
Resumo:
The sponge Tetilla sp. (Tetractinomorpha: Tetillidae) is a common species in the eastern Mediterranean. This sponge inhabits four different habitat types differing in wave impact and irradiance levels. Two of these habitats (a shallow cave and deep water) are characterized by relatively calm water, whereas the other two (shallow exposed site and tide pools) are in turbulent water with high energy flow. The present study examined the influence of physical (depth, illumination and water motion) and biotic factors on morphology, skeletal plasticity and reproductive traits among the four spatially separated populations. Sponges from tidal pools had significantly larger body volume than sponges from deep water and from shallow caves (ANOVA: tidal-deep P< 0.0001; tidal-shallow caves P< 0.05). Sponges from exposed habitats were significantly larger than deep-water sponges (ANOVA: P=0.01). In addition, individuals from tide pools and from the exposed habitat had a significantly higher proportion of structural silica than sponges from the calmer deep water and from the cave sites. Oxea spicules in sponges from the calm habitats were significantly shorter than in those from the tidal pools and the exposed habitats. The percentage of spicules out of a sponge's dry weight in individuals transplanted from deep (calm) to shallow (turbulent) water significantly increased by 21.9&PLUSMN; 12.9%. The new spicule percentage did not differ significantly from that of sponges originally from shallow water. Oocyte diameter differed significantly between habitats. The maximal size of mature eggs was found in deep-water sponges in June (97&PLUSMN; 5 μ m). In the shallow habitats, a smaller maximal oocyte diameter was found in the cave, in May (56.5&PLUSMN; 3 μ m). Furthermore, oocyte density in shallow-water sponges was highest in May and decreased in June (with 88.2&PLUSMN; 9 and 19.3&PLUSMN; 9 oocytes mm(-2), respectively). At the same time (June), oocyte density of deep-water sponges had just reached its maximum (155&PLUSMN; 33.7 oocytes mm(-2)). The difference in oocyte size and density between deep- and shallow-water individuals indicates an earlier gamete release in the shallow sponge population. The results suggest that plasticity in skeletal design of this sponge indicates a trade off between spicule production and investment in reproduction.
Resumo:
Ten strains identified as marine actinomycetes related to the 'Salinospora ' group previously reported only from marine sediments were isolated from the Great Barrier Reef marine sponge Pseudoceratina clavata. The relationship of the isolates to 'Salinospora' was confirmed by phylogenetic analysis of 16S rRNA gene sequences. Colony morphology and pigmentation, occurrence and position of spores, and salinity requirements for growth were all consistent with this relationship. Genes homologous to beta-ketosynthase, an enzyme forming part of a polyketide synthesis complex, were retrieved from these isolates; these genes shared homology with other Type I ketosynthase genes, and phylogenetic comparison with amino acid sequences derived from database beta-ketosynthase genes was consistent with the close relationship of these isolates to the actinomycetes. Primers based on 16S rRNA gene sequences and designed for targeting amplification of members of the 'Salinospora' group via polymerase chain reaction have been used to demonstrate occurrence of these actinomycetes within the sponge tissue. In vitro bioassays of extracts from the isolates for antibiotic activity demonstrated that these actinomycetes have the potential to inhibit other sponge symbionts in vivo, including both Gram-negative and Gram-positive bacteria.
Resumo:
Photosynthetic endolithic algae and cyanobacteria live within the skeletons of many scleractinians. Under normal conditions, less than 5% of the photosynthetically active radiation (PAR) reaches the green endolithic algae because of the absorbance of light by the endosymbiotic dinoflagellates and the carbonate skeleton. When corals bleach (loose dinoflagellate symbionts), however, the tissue of the corals become highly transparent and photosynthetic microendoliths may be exposed to high levels of both thermal and solar stress. This study explores the consequence of these combined stresses on the phototrophic endoliths inhabiting the skeleton of Montipora monasteriata, growing at Heron Island, on the southern Great Barrier Reef. Endoliths that were exposed to sun after tissue removal were by far more susceptible to thermal photoinhibition and photo-damage than endoliths under coral tissue that contained high concentrations of brown dinoflagellate symbionts. While temperature or light alone did not result in decreased photosynthetic efficiency of the endoliths, combined thermal and solar stress caused a major decrease and delayed recovery. Endoliths protected under intact tissue recovered rapidly and photoacclimated soon after exposure to elevated sea temperatures. Endoliths under naturally occurring bleached tissue of M. monasteriata colonies (bleaching event in March 2004 at Heron Island) acclimated to increased irradiance as the brown symbionts disappeared. We suggest that two major factors determine the outcome of thermal bleaching to the endolith community. The first is the microhabitat and light levels under which a coral grows, and the second is the susceptibility of the coral-dinoflagellates symbiosis to thermal stress. More resistant corals may take longer to bleach allowing endoliths time to acclimate to a new light environment. This in turn may have implications for coral survival.
Resumo:
Metamorphosis is both an ecological and a developmental genetic transition that an organism undergoes as a normal part of ontogeny. Many organisms have the ability to delay metamorphosis when conditions are unsuitable. This strategy carries obvious benefits, but may also result in severe consequences for older larvae that run low on energy. In the marine environment, some lecithotrophic larvae that have prolonged periods in the plankton may begin forming postlarval and juvenile structures that normally do not appear until after settlement and the initiation of metamorphosis. This precocious activation of the postlarval developmental program may reflect an adaptation to increase the survival of older, energy-depleted larvae by allowing them to metamorphose more quickly. In the present study, we investigate morphological and genetic consequences of delay of metamorphosis in larvae of Herdmania momus (a solitary stolidobranch ascidian). We observe significant morphological and genetic changes during prolonged larval life, with older larvae displaying significant changes in RNA levels, precocious migration of mesenchyme cells, and changes in larval shape including shortening of the tail. While these observations suggest that the older H. momus larvae are functionally different from younger larvae and possibly becoming more predisposed to undergo metamorphosis, we did not find any significant differences in gene expression levels between postlarvae arising from larvae that metamorphosed as soon as they were competent and postlarvae developing from larvae that postponed metamorphosis. This recalibration, or convergence, of transcript levels in the early postlarva suggests that changes that occur during prolonged larval life of H. momus are not necessarily associated with early activation of adult organ differentiation. Instead, it suggests that an autonomous developmental program is activated in H. momus upon the induction of metamorphosis regardless of the history of the larva.
Resumo:
The relative importance of factors that may promote genetic differentiation in marine organisms is largely unknown. Here, contributions to population structure from biogeography, habitat distribution, and isolation by distance were investigated in Axoclinus nigricaudus, a small subtidal rock reef fish, throughout its range in the Gulf of California. A 408 basepair fragment of the mitochondrial control region was sequenced from 105 individuals. Variation was significantly partitioned between many pairs of populations. Phylogenetic analyses, hierarchical analyses of variance, and general linear models substantiated a major break between two putative biogeographic regions. This genetic discontinuity coincides with an abrupt change in ecological characteristics (including temperature and salinity) but does not coincide with known oceanographic circulation patterns. Geographic distance and the nature of habitat separating populations (continuous habitat along a shoreline, discontinuous habitat along a shoreline, and open water) also contributed to population structure in general linear model analyses. To verify that local populations are genetically stable over time, one population was resampled on four occasions over eighteen months; it showed no evidence of a temporal component to diversity. These results indicate that having a planktonic life stage does not preclude geographically partitioned genetic variation over relatively small geographic distances in marine environments. Moreover, levels of genetic differentiation among populations of Axoclinus nigricaudus cannot be explained by a single factor, but are due to the combined influences of a biogeographic boundary, habitat, and geographic distance.
Resumo:
Investigation of a southern Australian marine sponge, Mycale sp., resulted in isolation of the known norsesterterpenes 1-3 as well as two new isomeric norsesterterpenes, mycaperoxide C methyl ester (4) and mycaperoxide D methyl ester (5), and six new norterpenes (6-11).
Resumo:
A Sigmosceptrella sp. of sponge collected during trawling operations in the Great Australian Eight, Australia, has yielded a series of new norterpenes. These include a new bisnorditerpene, sigmosceptrin-A (5); two new norditerpenes, sigmosceptrin-B (14) and sigmosceptrin-C (15), isolated as their methyl esters (6) and (7) respectively; and an ethylated artefact, sigmosceptrin-B ethyl ester (8). Complete stereostructures were assigned to the sigmosceptrins by spectroscopic analysis, chemical degradation, derivatization, and by a single-crystal X-ray structural analysis. A biosynthetic pathway is proposed that requires a common biosynthetic precursor to both the sigmosceptrins and norterpene cyclic peroxides.
Resumo:
Chemical analysis of N. anomala collected off rock platforms along the southern coast of Australia yielded a cis-dihydroxytetrahydrofuran (2), the structure for which was assigned by spectroscopic analysis, chemical derivatization and biomimetic synthesis. Tetrahydrofurans from Notheia anomola are reported for the first time as potent and selective inhibitors of the larval development of parasitic nematodes. SAR observations are made on a selection of natural, semi-synthetic and synthetic tetrahydrofurans. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Extracellular polysaccharides from three Erythroclonium spp. were shown, by a combination of compositional, linkage analyses, and Fourier transform infrared and C-13-nuclear magnetic resonance spectroscopy, to be highly substituted carrageenans with at least five types of repeating disaccharide units. These are the carrabiose 2,4'-disulfate of iota-carrageenan, carrabiose 2-sulfate of alpha-carrageenan, the 6'-O-methylated counterparts of each of these repeating units, and 4',6'-O-(1-carboxyethylidene)carrabiose 2-sulfate. The polysaccharides also contain significant amounts of unsubstituted, 4-linked galactopyranose and small amounts of 4-linked 3-O-methylgalactopyranose and terminal glycosyl residues. The carrageenan preparations of the three species are similar, differing only in the proportions of some components. (C) 1998 Elsevier Science Ltd.