21 resultados para Loxosceles venoms
Resumo:
Dr Ronald Vernon Southcott (1918–1998) was amongst the greatest of the Australian doctor-naturalists. His toxinological contributions included the description and naming of the box-jellyfish, Chironex fleckeri, the first definitive study (1950–1957) of the toxinology, taxonomy and biology of Australian scorpions; and the first observations in Australia of the introduced fiddleback spider, Loxosceles. His research into the medical effects of toxic fungi, poisonous plants and Australian insects was extensive. He was a founding member of the International Society on Toxinology and served on the Toxicon Editorial Board for more than 30 years. He also made extensive contributions to acarology, and to the taxonomy of mites, specifically the sub-families and genera of the Erythraeoidea. This prodigious output was achieved by one who, with the exception of war service (1942–1946), almost never travelled outside South Australia, was almost entirely self-funded and worked from his home laboratory. With Dr. P.D. Scott and C.J. Glover, he was also the authority on the fish of South Australia. Dr. Southcott was also a medical epidemiologist and senior medical administrator (1949–1978) with the Australian Commonwealth Department of Veterans’ Affairs. He served for 30 years as an Honorary Consultant in Toxicology to the Adelaide Children's Hospital. As a zoologist and botanist of astounding breadth, he worked indefatigably in a voluntary capacity for the South Australian Museum, of which he was Museum Board Chairman from 1974 to 1982. In the pantheon of the great doctor-naturalists who have worked in Australia, he stands with Robert Brown and Thomas Lane Bancroft.
Resumo:
Scorpion toxins are important experimental tools for characterization of vast array of ion channels and serve as scaffolds for drug design. General public database entries contain limited annotation whereby rich structure-function information from mutation studies is typically not available. SCORPION2 contains more than 800 records of native and mutant toxin sequences enriched with binding affinity and toxicity information, 624 three-dimensional structures and some 500 references. SCORPION2 has a set of search and prediction tools that allow users to extract and perform specific queries: text searches of scorpion toxin records, sequence similarity search, extraction of sequences, visualization of scorpion toxin structures, analysis of toxic activity, and functional annotation of previously uncharacterized scorpion toxins. The SCORPION2 database is available at http://sdmc.i2r.a-star.edu.sg/scorpion/. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The complex nature of venom from spider species offers a unique natural source of potential pharmacological tools and therapeutic leads. The increased interest in spider venom molecules requires reproducible and precise identification methods. The current taxonomy of the Australian Funnel-web spiders is incomplete, and therefore, accurate identification of these spiders is difficult. Here, we present a study of venom from numerous morphologically similar specimens of the Hadronyche infensa species group collected from a variety of geographic locations in southeast Queensland. Analysis of the crude venoms using online reversed-phase high performance liquid chromatography/electrospray ionisation mass spectrometry (rp-HPLC/ESI-MS) revealed that the venom profiles provide a useful means of specimen identification, from the species level to species variants. Tables defining the descriptor molecules for each group of specimens were constructed and provided a quick reference of the relationship between one specimen and another. The study revealed that the morphologically similar specimens from the southeast Queensland region are a number of different species/species variants. Furthermore, the study supports aspects of the current taxonomy with respect to the H. infensa species group. Analysis of Australian Funnel-web spider venom by rp-HPLC/ESI-MS provides a rapid and accurate method of species/species variant identification. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The abundance and activity of the prothrombin activator (pseutarin C) within the venom of the Eastern brown snake (Pseudonaja textilis textilis) is the primary determinant of its coagulation potency. Textilinin-1, also in this venom, is a plasmin inhibitor which is thought to exert its toxic effects through the slowing of fibrinolysis. The aim of this report is to determine if there are differences in the potency of the venom from Eastern brown snakes collected from South Australia (SA) compared to those from Queensland (QLD). A concentration of 0.4 mu g/ml venom protein from six QLD specimens clotted citrated plasma in an average time of 21.4 +/- 3.3 s compared to 68.7 +/- 2.4 s for the same amount of SA venom (averaged for six individuals). The more potent procoagulant activity of the QLD venom was measured between 0.4 and 94 mu g/ml venom protein in plasma. The anti-plasmin activity of textilinin was also greater in the venom of the snakes collected from QLD, causing full inhibition of plasmin at approximately 1.88 mu g/ml of venom protein compared to approximately 7.5 mu g/ml for the SA venoms. It is concluded that geographic differentiation of the Eastern brown snakes results in significant differences venom potency.
Resumo:
Highly selective Cav2.2 voltage-gated calcium channel (VGCC) inhibitors have emerged as a new class of therapeutics for the treatment of chronic and neuropathic pain. Cone snail venoms provided the first drug in class with FDA approval granted in 2005 to Prialt (ω-conotoxin MVIIA, Elan) for the treatment of neuropathic pain. Since this pioneering work, major efforts underway to develop alternative small molecule inhibitors of Cav2.2 calcium channel have met with varied success. This review focuses on the properties of the Cav2.2 calcium channel in different pain states, the action of ω-conotoxins GVIA, MVIIA and CVID, describing their structure-activity relationships and potential as leads for the design of improved Cav2.2 calcium channel therapeutics, and finally the development of small molecules for the treatment of chronic pain.
Resumo:
Insects have a much smaller repertoire of voltage-gated calcium (Ca-v) channels than vertebrates. Drosophila melanogaster harbors only a single ortholog of each of the vertebrate Ca(v)1, Ca(v)2, and Ca(v)3 subtypes, although its basal inventory is expanded by alternative splicing and editing of Ca-v channel transcripts. Nevertheless, there appears to be little functional plasticity within this limited panel of insect Ca-v channels, since severe loss-of-function mutations in genes encoding the pore-forming a, subunits in Drosophila are embryonic lethal. Since the primary role of spider venom is to paralyze or kill insect prey, it is not surprising that most, if not all, spider venoms contain peptides that potently modify the activity of these functionally critical insect Ca-v channels. Unfortunately, it has proven difficult to determine the precise ion channel subtypes recognized by these peptide toxins since insect Ca-v channels have significantly different pharmacology to their vertebrate counterparts, and cloned insect Ca-v channels are not available for electrophysiological studies. However, biochemical and genetic studies indicate that some of these spider toxins might ultimately become the defining pharmacology for certain subtypes of insect Ca-v channels. This review focuses on peptidic spider toxins that specifically target insect Ca-v channels. In addition to providing novel molecular tools for ion channel characterization, some of these toxins are being used as leads to develop new methods for controlling insect pests. (c) 2006 Elsevier Ltd. All rights reserved.