28 resultados para Legacy object oriented code
Resumo:
A parallel computing environment to support optimization of large-scale engineering systems is designed and implemented on Windows-based personal computer networks, using the master-worker model and the Parallel Virtual Machine (PVM). It is involved in decomposition of a large engineering system into a number of smaller subsystems optimized in parallel on worker nodes and coordination of subsystem optimization results on the master node. The environment consists of six functional modules, i.e. the master control, the optimization model generator, the optimizer, the data manager, the monitor, and the post processor. Object-oriented design of these modules is presented. The environment supports steps from the generation of optimization models to the solution and the visualization on networks of computers. User-friendly graphical interfaces make it easy to define the problem, and monitor and steer the optimization process. It has been verified by an example of a large space truss optimization. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
This paper highlights the importance of design expertise, for designing liquid retaining structures, including subjective judgments and professional experience. Design of liquid retaining structures has special features different from the others. Being more vulnerable to corrosion problem, they have stringent requirements against serviceability limit state of crack. It is the premise of the study to transferring expert knowledge in a computerized blackboard system. Hybrid knowledge representation schemes, including production rules, object-oriented programming, and procedural methods, are employed to express engineering heuristics and standard design knowledge during the development of the knowledge-based system (KBS) for design of liquid retaining structures. This approach renders it possible to take advantages of the characteristics of each method. The system can provide the user with advice on preliminary design, loading specification, optimized configuration selection and detailed design analysis of liquid retaining structure. It would be beneficial to the field of retaining structure design by focusing on the acquisition and organization of expert knowledge through the development of recent artificial intelligence technology. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Enterprise systems interoperability (ESI) is an important topic for business currently. This situation is evidenced, at least in part, by the number and extent of potential candidate protocols for such process interoperation, viz., ebXML, BPML, BPEL, and WSCI. Wide-ranging support for each of these candidate standards already exists. However, despite broad acceptance, a sound theoretical evaluation of these approaches has not yet been provided. We use the Bunge-Wand-Weber (BWW) models, in particular, the representation model, to provide the basis for such a theoretical evaluation. We, and other researchers, have shown the usefulness of the representation model for analyzing, evaluating, and engineering techniques in the areas of traditional and structured systems analysis, object-oriented modeling, and process modeling. In this work, we address the question, what are the potential semantic weaknesses of using ebXML alone for process interoperation between enterprise systems? We find that users will lack important implementation information because of representational deficiencies; due to ontological redundancy, the complexity of the specification is unnecessarily increased; and, users of the specification will have to bring in extra-model knowledge to understand constructs in the specification due to instances of ontological excess.
Resumo:
Owing to the high degree of vulnerability of liquid retaining structures to corrosion problems, there are stringent requirements in its design against cracking. In this paper, a prototype knowledge-based system is developed and implemented for the design of liquid retaining structures based on the blackboard architecture. A commercially available expert system shell VISUAL RULE STUDIO working as an ActiveX Designer under the VISUAL BASIC programming environment is employed. Hybrid knowledge representation approach with production rules and procedural methods under object-oriented programming are used to represent the engineering heuristics and design knowledge of this domain. It is demonstrated that the blackboard architecture is capable of integrating different knowledge together in an effective manner. The system is tailored to give advice to users regarding preliminary design, loading specification and optimized configuration selection of this type of structure. An example of application is given to illustrate the capabilities of the prototype system in transferring knowledge on liquid retaining structure to novice engineers. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Current Physiologically based pharmacokinetic (PBPK) models are inductive. We present an additional, different approach that is based on the synthetic rather than the inductive approach to modeling and simulation. It relies on object-oriented programming A model of the referent system in its experimental context is synthesized by assembling objects that represent components such as molecules, cells, aspects of tissue architecture, catheters, etc. The single pass perfused rat liver has been well described in evaluating hepatic drug pharmacokinetics (PK) and is the system on which we focus. In silico experiments begin with administration of objects representing actual compounds. Data are collected in a manner analogous to that in the referent PK experiments. The synthetic modeling method allows for recognition and representation of discrete event and discrete time processes, as well as heterogeneity in organization, function, and spatial effects. An application is developed for sucrose and antipyrine, administered separately and together PBPK modeling has made extensive progress in characterizing abstracted PK properties but this has also been its limitation. Now, other important questions and possible extensions emerge. How are these PK properties and the observed behaviors generated? The inherent heuristic limitations of traditional models have hindered getting meaningful, detailed answers to such questions. Synthetic models of the type described here are specifically intended to help answer such questions. Analogous to wet-lab experimental models, they retain their applicability even when broken apart into sub-components. Having and applying this new class of models along with traditional PK modeling methods is expected to increase the productivity of pharmaceutical research at all levels that make use of modeling and simulation.
Resumo:
This paper presents a formal framework for modelling and analysing mobile systems. The framework comprises a collection of models of the dominant design paradigms which are readily extended to incorporate details of particular technologies, i.e., programming languages and their run-time support, and applications. The modelling language is Object-Z, an extension of the well-known Z specification language with explicit support for object-oriented concepts. Its support for object orientation makes Object-Z particularly suited to our task. The system structuring techniques offered by object-orientation are well suited to modelling mobile systems. In addition, inheritance and polymorphism allow us to exploit commonalities in mobile systems by defining more complex models in terms of simpler ones.
Resumo:
The testing of concurrent software components can be difficult due to the inherent non-determinism present in these components. For example, if the same test case is run multiple times, it may produce different results. This non-determinism may lead to problems with determining expected outputs. In this paper, we present and discuss several possible solutions to this problem in the context of testing concurrent Java components using the ConAn testing tool. We then present a recent extension to the tool that provides a general solution to this problem that is sufficient to deal with the level of non-determinism that we have encountered in testing over 20 components with ConAn. © 2005 IEEE
Resumo:
The Meta-Object Facility (MOF) provides a standardized framework for object-oriented models. An instance of a MOF model contains objects and links whose interfaces are entirely derived from that model. Information contained in these objects can be accessed directly, however, in order to realize the Model-Driven Architecture@trade; (MDA), we must have a mechanism for representing and evaluating structured queries on these instances. The MOF Query Language (MQL) is a language that extends the UML's Object Constraint Language (OCL) to provide more expressive power, such as higher-order queries, parametric polymorphism and argument polymorphism. Not only do these features allow more powerful queries, but they also encourage a greater degree of modularization and re-use, resulting in faster prototyping and facilitating automated integrity analysis. This paper presents an overview of the motivations for developing MQL and also discusses its abstract syntax, presented as a MOF model, and its semantics
Resumo:
The Java programming language supports concurrency. Concurrent programs are hard to test due to their inherent non-determinism. This paper presents a classification of concurrency failures that is based on a model of Java concurrency. The model and failure classification is used to justify coverage of synchronization primitives of concurrent components. This is achieved by constructing concurrency flow graphs for each method call. A producer-consumer monitor is used to demonstrate how the approach can be used to measure coverage of concurrency primitives and thereby assist in determining test sequences for deterministic execution.
Resumo:
This paper presents a framework for compositional verification of Object-Z specifications. Its key feature is a proof rule based on decomposition of hierarchical Object-Z models. For each component in the hierarchy local properties are proven in a single proof step. However, we do not consider components in isolation. Instead, components are envisaged in the context of the referencing super-component and proof steps involve assumptions on properties of the sub-components. The framework is defined for Linear Temporal Logic (LTL)
Resumo:
A test oracle provides a means for determining whether an implementation behaves according to its specification. A passive test oracle checks that the correct behaviour has been implemented, but does not implement the behaviour itself. In previous work, we have presented a method that allows us to derive passive C++ test oracles from formal specifications written in Object-Z. We describe the "Warlock" prototype tool that supports the method. Warlock is built on top of an existing Object-Z type checker and generates oracle code for a substantial subset of the Object-Z language. We describe the architecture of Warlock and its application to a number of Object-Z specifications. We also discuss its current limitations.