35 resultados para Laplace’s equations
Resumo:
What is the computational power of a quantum computer? We show that determining the output of a quantum computation is equivalent to counting the number of solutions to an easily computed set of polynomials defined over the finite field Z(2). This connection allows simple proofs to be given for two known relationships between quantum and classical complexity classes, namely BQP subset of P-#P and BQP subset of PP.
Resumo:
Introductory courses covering modem physics sometimes introduce some elementary ideas from general relativity, though the idea of a geodesic is generally limited to shortest Euclidean length on a curved surface of two spatial dimensions rather than extremal aging in spacetime. It is shown that Epstein charts provide a simple geometric picture of geodesics in one space and one time dimension and that for a hypothetical uniform gravitational field, geodesics are straight lines on a planar diagram. This means that the properties of geodesics in a uniform field can be calculated with only a knowledge of elementary geometry and trigonometry, thus making the calculation of some basic results of general relativity accessible to students even in an algebra-based survey course on physics.
Resumo:
Optical Bloch equations are widely used for describing dynamics in a system consisting molecules, electromagnetic waves, and a thermal bath. We analyze applicability of these equations to a single molecule imbedded in a solid matrix. Classical Bloch equations and the limits of their applicability are derived from more general master equations. Simple and intuitively appealing picture based on stochastic Bloch equations shows that at low temperatures, contrary to common believes, a strong driving field can not only suppress but can also increase decay rates of Rabi oscillations. A physical system where predicted effects can be observed experimentally is suggested. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Purpose: This Study evaluated the predictive validity of three previously published ActiGraph energy expenditure (EE) prediction equations developed for children and adolescents. Methods: A total of 45 healthy children and adolescents (mean age: 13.7 +/- 2.6 yr) completed four 5-min activity trials (normal walking. brisk walking, easy running, and fast running) in ail indoor exercise facility. During each trial, participants were all ActiGraph accelerometer oil the right hip. EE was monitored breath by breath using the Cosmed K4b(2) portable indirect calorimetry system. Differences and associations between measured and predicted EE were assessed using dependent t-tests and Pearson correlations, respectively. Classification accuracy was assessed using percent agreement, sensitivity, specificity, and area under the receiver operating characteristic (ROC) curve, Results: None of the equations accurately predicted mean energy expenditure during each of the four activity trials. Each equation, however, accurately predicted mean EE in at least one activity trial. The Puyau equation accurately predicted EE during slow walking. The Trost equation accurately predicted EE during slow running. The Freedson equation accurately predicted EE during fast running. None of the three equations accurately predicted EE during brisk walking. The equations exhibited fair to excellent classification accuracy with respect to activity intensity. with the Trost equation exhibiting the highest classification accuracy and the Puyau equation exhibiting the lowest. Conclusions: These data suggest that the three accelerometer prediction equations do not accurately predict EE on a minute-by-minute basis in children and adolescents during overground walking and running. The equations maybe, however, for estimating participation in moderate and vigorous activity.
Resumo:
Despite the number of computer-assisted methods described for the derivation of steady-state equations of enzyme systems, most of them are focused on strict steady-state conditions or are not able to solve complex reaction mechanisms. Moreover, many of them are based on computer programs that are either not readily available or have limitations. We present here a computer program called WinStes, which derives equations for both strict steady-state systems and those with the assumption of rapid equilibrium, for branched or unbranched mechanisms, containing both reversible and irreversible conversion steps. It solves reaction mechanisms involving up to 255 enzyme species, connected by up to 255 conversion steps. The program provides all the advantages of the Windows programs, such as a user-friendly graphical interface, and has a short computation time. WinStes is available free of charge on request from the authors. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Time delay is an important aspect in the modelling of genetic regulation due to slow biochemical reactions such as gene transcription and translation, and protein diffusion between the cytosol and nucleus. In this paper we introduce a general mathematical formalism via stochastic delay differential equations for describing time delays in genetic regulatory networks. Based on recent developments with the delay stochastic simulation algorithm, the delay chemical masterequation and the delay reaction rate equation are developed for describing biological reactions with time delay, which leads to stochastic delay differential equations derived from the Langevin approach. Two simple genetic regulatory networks are used to study the impact of' intrinsic noise on the system dynamics where there are delays. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
First-year undergraduate engineering students' understanding of the units of factors and terms in first-order ordinary differential equations used in modelling contexts was investigated using diagnostic quiz questions. Few students appeared to realize that the units of each term in such equations must be the same, or if they did, nevertheless failed to apply that knowledge when needed. In addition, few students were able to determine the units of a proportionality factor in a simple equation. These results indicate that lecturers of modelling courses cannot take this foundational knowledge for granted and should explicitly include it in instruction.