73 resultados para Land Cover
Resumo:
Rainforests in eastern Australia have been extensively cleared over the past two centuries. In recent decades, there have been increasing efforts to reforest some of these cleared lands, using a variety of methods, to meet a range of economic and environmental objectives. However, the extent to which the various styles of reforestation restore structure, composition and ecological function to cleared land is not presently understood. In this study, we develop and apply a method for quantifying the structural attributes of reforestation sites in tropical and subtropical Australia. The types of reforestation studied were plantation monocultures, mixed-species cabinet timber plots, diverse restoration plantings and unmanaged regrowth. Two age classes of reforestation were examined: 'young' (5-22 years), incorporating sites from all categories, and 'old' (30-70 years), in which only monoculture plantations and regrowth were represented. A total of 104 sites were surveyed including reference sites in intact rainforest and pasture. Intact rainforest was characterised by a suite of complex structural features including abundant special life forms (vines, epiphytes, hemi-epiphytes and strangler figs), a dense stand of trees in a range of size classes, a closed canopy, a shrubby understorey and a well-developed ground layer of leaf litter and woody debris. These features were lost on conversion to pasture. While all types of reforestation returned some elements of structural complexity to cleared land, young plantation monocultures, cabinet timber plots and young regrowth had a relatively simple structure. These sites typically had a low density of woody stems, a relatively open canopy and grassy ground cover, and lacked large trees, coarse woody debris and most special life forms. Restoration plantings and old regrowth were more complex, with a high density of woody stems, a relatively closed canopy and shrubby understorey. Old monoculture plantations in the tropics had acquired many of the structural attributes of intact forest, however this was not the case in the subtropics, where plantations were subject to more intensive management. The marked differences in structural complexity between sites suggest that the different types of reforestation practiced in eastern Australia are likely to vary considerably in their value as habitat for rainforest biota. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
This paper examines the use of Acacia as a nurse crop to overcome some of the ecological and economic impediments to reforestation of degraded areas dominated by grasses including Imperata cylindrica. The study site at Hai Van Pass in central Vietnam was initially reforested using Acacia auriculiformis. After 8 years these stands were thinned and under-planted with Hopea odorata, Dipterocarpus alatus, Parashorea chinensis, Tarrietia javanica, Parashorea stellata, Scaphium lychnophorum, Peltophorum dasyrhachis var. tonkinensis and other high-value native species. At the time of field assessment (early 2004), the Acacia trees were aged between 16 and 18 years and basal area ranged from 9 to 13 m(2) ha(-1) after several thinnings. Acacias facilitated the establishment of native species, but after 6-7 years of growth, further thinning is needed to maintain growth rates. In addition to assisting the establishment of native species, the Acacia nurse crop should provide a revenue stream (NPV about US$ 180, or IRR 19%) sufficient to cover the establishment costs of the underplanted native species (about US$ 100). (c) 2006 Published by Elsevier B.V.
Resumo:
Deforestation often occurs as temporal waves and in localized fronts termed 'deforestation hotspots' driven by economic pulses and population pressure. Of particular concern for conservation planning are 'biodiversity hotspots' where high concentrations of endemic species undergo rapid loss and fragmentation of habitat. We investigate the deforestation process in Caqueta, a biodiversity hotspot and major colonization front of the Colombian Amazon using multi-temporal satellite imagery of the periods 1989-1996-1999-2002. The probabilities of deforestation and regeneration were modeled against soil fertility, accessibility and neighborhood terms, using logistic regression analysis. Deforestation and regeneration patterns and rates were highly variable across the colonization front. The regional average annual deforestation rate was 2.6%, but varied locally between -1.8% (regeneration) and 5.3%, with maximum rates in landscapes with 40-60% forest cover and highest edge densities, showing an analogous pattern to the spread of disease. Soil fertility and forest and secondary vegetation neighbors showed positive and significant relationships with the probability of deforestation. For forest regeneration, soil fertility had a significant negative effect while the other parameters were marginally significant. The logistic regression models across all periods showed a high level of discrimination power for both deforestation and forest regeneration, with ROC values > 0.80. We document the effect of policies and institutional changes on the land clearing process, such as the failed peace process between government and guerillas in 1999-2002, which redirected the spread of deforestation and increased forest regeneration. The implications for conservation in biologically rich areas, such as Caqueta are discussed. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
We present AUSLEM (AUStralian Land Erodibility Model), a land erodibility modelling system that utilizes a rule-set of surficial and climatic thresholds applied through a Geographic Information System (GIs) modelling framework to predict landscape susceptibility to wind erosion. AUSLEM is distinctive in that it quantitatively assesses landscape susceptibility to wind erosion at a 5 x 5 km. spatial resolution on a monthly time-step across Australia. The system was implemented for representative wet (1984), dry (1994), and average rainfall (1997) years with corresponding low, high and moderate dust storm day frequencies. Results demonstrate that AUSLEM can identify landscape erodibility, and provide an interpretation of the physical nature and distribution of erodible landscapes in Australia. Further, results offer an assessment of the dynamic tendencies of erodibility in space and time in response to the El Nino Southern Oscillation (ENSO) and seasonal synoptic scale climate variability. A comparative analysis of AUSLEM output with independent national and international wind erosion, atmospheric aerosol and dust event records indicates a high level of model competency. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The area of private land suitable and available for growing hoop pine (Araucaria cunninghamii) on the Atherton Tablelands in North Queensland was modelled using a geographic information system (GIS). In Atherton, Eacham and Herberton shires, approximately 64,700 ha of privately owned land were identified as having a mean annual rainfall and soil type similar to Forestry Plantations Queensland (FPQ) hoop pine growth plots with an approximate growth rate of 20 m3 per annum. Land with slope of over 25° and land covered with native vegetation were excluded in the estimation. If land which is currently used for high-value agriculture is also excluded, the net area of land potentially suitable and available for expansion of hoop pine plantations is approximately 22,900 ha. Expert silvicultural advice emphasized the role of site preparation and weed control in affecting the long-term growth rate of hoop pine. Hence, sites with less than optimal fertility and rainfall may be considered as being potentially suitable for growing hoop pine at a lower growth rate. The datasets had been prepared at various scales and differing precision for their description of land attributes. Therefore, the results of this investigation have limited applicability for planning at the individual farm level but are useful at the regional level to target areas for plantation expansion.
Resumo:
Our group have recently proposed that low prenatal vitamin D may be a risk-modifying factor for schizophrenia. Climate variability impacts on vitamin D levels in a population via fluctuations in the amount of available UV radiation. In order to explore this hypothesis, we examined fluctuations in the birthrates for people with schizophrenia born between 1920 and 1967 and three sets of variables strongly associated with UV radiation. These included: (a) the Southern Oscillation Index (SOI), a marker of El Nino which is the most prominent meteorological factor that influences Queensland weather: (b) measures of cloud cover and (c) measures of sunshine. Schizophrenia births were extracted from the Queensland Mental Health register and corrected for background population birth rates. Schizophrenia birth rates had several apparently non-random features in common with the SO1. The prominent SO1 fluctuation event that occurred between 1937 and 1943 is congruent with the most prominent fluctuation in schizophrenia birth rates. The relatively flat profile of SOI activity between 1927 and 1936 also corresponds to the flattest period in the schizophrenia time series. Both time series have prominent oscillations in the 3 ~, year range between 1946 and 1960. Significant associations between schizophrenia birth rates and measures of both sunshine and cloud cover were identified,and all three time series shared periodicity in the 3-4 year range. The analyses suggest that the risk of schizophrenia is higher for those born during times of increased cloud cover,reduced sunshine and positive SO1. These ecological analyses provide initial support for the vitamin D hypothesis, however alternative non-genetic candidate exposures also need to be considered. Other sites with year-to-year fluctuations in cloud cover and sunshine should examine patterns of association between these climate variables and schizophrenia birth rates. The Stanley Foundation supported this project.
Resumo:
The Montreal Process indicators are intended to provide a common framework for assessing and reviewing progress toward sustainable forest management. The potential of a combined geometrical-optical/spectral mixture analysis model was assessed for mapping the Montreal Process age class and successional age indicators at a regional scale using Landsat Thematic data. The project location is an area of eucalyptus forest in Emu Creek State Forest, Southeast Queensland, Australia. A quantitative model relating the spectral reflectance of a forest to the illumination geometry, slope, and aspect of the terrain surface and the size, shape, and density, and canopy size. Inversion of this model necessitated the use of spectral mixture analysis to recover subpixel information on the fractional extent of ground scene elements (such as sunlit canopy, shaded canopy, sunlit background, and shaded background). Results obtained fron a sensitivity analysis allowed improved allocation of resources to maximize the predictive accuracy of the model. It was found that modeled estimates of crown cover projection, canopy size, and tree densities had significant agreement with field and air photo-interpreted estimates. However, the accuracy of the successional stage classification was limited. The results obtained highlight the potential for future integration of high and moderate spatial resolution-imaging sensors for monitoring forest structure and condition. (C) Elsevier Science Inc., 2000.
Resumo:
A modelling framework is developed to determine the joint economic and environmental net benefits of alternative land allocation strategies. Estimates of community preferences for preservation of natural land, derived from a choice modelling study, are used as input to a model of agricultural production in an optimisation framework. The trade-offs between agricultural production and environmental protection are analysed using the sugar industry of the Herbert River district of north Queensland as an example. Spatially-differentiated resource attributes and the opportunity costs of natural land determine the optimal tradeoffs between production and conservation for a range of sugar prices.
Resumo:
The Australian Soil Resources Information System (ASRIS) database compiles the best publicly available information available across Commonwealth, State, and Territory agencies into a national database of soil profile data, digital soil and land resources maps, and climate, terrain, and lithology datasets. These datasets are described in detail in this paper. Most datasets are thematic grids that cover the intensively used agricultural zones in Australia.
Resumo:
Soil erosion is a major environmental issue in Australia. It reduces land productivity and has off-site effects of decreased water quality. Broad-scale spatially distributed soil erosion estimation is essential for prioritising erosion control programs and as a component of broader assessments of natural resource condition. This paper describes spatial modelling methods and results that predict sheetwash and rill erosion over the Australian continent using the revised universal soil loss equation (RUSLE) and spatial data layers for each of the contributing environmental factors. The RUSLE has been used before in this way but here we advance the quality of estimation. We use time series of remote sensing imagery and daily rainfall to incorporate the effects of seasonally varying cover and rainfall intensity, and use new digital maps of soil and terrain properties. The results are compared with a compilation of Australian erosion plot data, revealing an acceptable consistency between predictions and observations. The modelling results show that: (1) the northern part of Australia has greater erosion potential than the south; (2) erosion potential differs significantly between summer and winter; (3) the average erosion rate is 4.1 t/ha. year over the continent and about 2.9 x 10(9) tonnes of soil is moved annually which represents 3.9% of global soil erosion from 5% of world land area; and (4) the erosion rate has increased from 4 to 33 times on average for agricultural lands compared with most natural vegetated lands.
Resumo:
As in the standard land assembly problem, a developer wants to buy two adjacent blocks of land belonging to two different owners. The value of the two blocks of land to the developer is greater than the sum of the individual values of the blocks for each owner. Unlike the land assembly literature, however, our focus is on the incentive that each lot owner has to delay the start of negotiations, rather than on the public goods nature of the problem. An incentive for delay exists, for example, when owners perceive that being last to sell will allow them to capture a larger share of the joint surplus from the development. We show that competition at point of sale can cause equilibrium delay, and that cooperation at point of sale will eliminate delay. This suggests that strategic delay is another source for the inefficient allocation of land, in addition to the public-good type externality pointed out by Grossman and Hart [Bell Journal of Economics 11 (1980) 42] and O'Flaherty [Regional Science and Urban Economics 24 (1994) 287]. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Coral reefs generally exist within a relatively narrow band of temperatures, light, and seawater aragonite saturation states. The growth of coral reefs is minimal or nonexistent outside this envelope. Climate change, through its effect on ocean temperature, has already had an impact on the world's coral reefs, with almost 30% of corals having disappeared since the beginning of the 1980s. Abnormally warm temperatures cause corals to bleach ( lose their brown dinoflagellate symbionts) and, if elevated for long enough, to die. Increasing atmospheric CO2 is also potentially affecting coral reefs by lowering the aragonite saturation state of seawater, making carbonate ions less available for calcification. The synergistic interaction of elevated temperature and CO2 is likely to produce major changes to coral reefs over the next few decades and centuries. Known tolerances of corals to projected changes to sea temperatures indicate that corals are unlikely to remain abundant on reefs and could be rare by the middle of this century if the atmospheric CO2 concentration doubles or triples. The combination of changes to sea temperature and carbonate ion availability could trigger large- scale changes in the biodiversity and function of coral reefs. The ramifications of these changes for the hundred of millions of coral reef - dependent people and industries living in a high- CO2 world have yet to be properly defined. The weight of evidence suggests, however, that projected changes will cause major shifts in the prospects for industries and societies that depend on having healthy coral reefs along their coastlines.