73 resultados para LEGUME GERMINATION
Resumo:
This study confirms that Australian isolates of Sclerotinia minor can produce fertile apothecia and further demonstrates that ascospores collected from these apothecia are pathogenic to sunflower (Helianthus annuus). Sunflower is a known host of the related fungus Sclerotinia sclerotiorum and is grown in some regions where S. minor is known to occur. Head rot symptoms were produced following inoculation with S. minor ascospores. Predictive modeling using CLIMEX software suggested that conditions suitable for carpogenic germination of S. minor probably occur in Australia particularly in southern regions. Carpogenic germination is probably a rare event in northern regions and, if it does occur, probably does not coincide with anthesis in sunflower crops, therefore allowing disease escape.
Resumo:
White cypress-pine stands typically support sparse densities of shrubs and grasses. The commonly held opinion is that leaching of allelopathic chemical compounds from cypress-pine litter partly facilitates this exclusion. Germination and growth of cypress pine seedlings do not appear to be similarly affected. This study set out to determine whether cypress litter had a differential effect on germination and growth of cypress-pine seedlings and on associated ground-cover species. Glasshouse trials comparing seedling emergence under cypress- and artificial-litter layers were undertaken. Cypress-pine litter did not have an inhibitory effect on the germination or growth of ground-cover species. In most cases, seedling emergence was facilitated by the application of cypress-pine litter due to its ability to increase the water holding capacity of the underlying soil. Cypress litter did not promote growth of its own seedlings over its competitors except on coarse-textured soils where it provided an ameliorative function to water stress due to the soil's reduced water holding capacity. The inhibition of ground-cover species' germination and growth in pure cypress stands was suggested to be the result of high below-ground resource competition due to the pine's expansive root morphology.
Resumo:
The thiol tripeptides, glutathione (GSH) and homoglutathione (hGSH), perform multiple roles in legumes, including protection against toxicity of free radicals and heavy metals. The three genes involved in the synthesis of GSH and hGSH in the model legume, Lotus japonicus, have been fully characterized and appear to be present as single copies in the genome. The gamma-glutamylcysteine synthetase (gammaecs) gene was mapped on the long arm of chromosome 4 (70.0 centimorgans [cM]) and consists of 15 exons, whereas the glutathione synthetase (gshs) and homoglutathione synthetase (hgshs) genes were mapped on the long arm of chromosome 1 (81.3 cM) and found to be arranged in tandem, with a separation of approximately 8 kb. Both genes consist of 12 exons of exactly the same size (except exon 1, which is similar). Two types of transcripts were detected for the gshs gene, which putatively encode proteins localized in the plastids and cytosol. Promoter regions contain cis-acting regulatory elements that may be involved in the plant's response to light, hormones, and stress. Determination of transcript levels, enzyme activities, and thiol contents in nodules, roots, and leaves revealed that gammaecs and hgshs are expressed in all three plant organs, whereas gshs is significantly functional only in nodules. This strongly suggests an important role of GSH in the rhizobia-legume symbiosis.
Resumo:
The influence of different light regimes on the germination of Australian and English populations of Phalaris paradoxa L. (awned canary-grass) seed was investigated to determine the impact of changing tillage practices on weed infestation. Seeds of all biotypes were highly viable, but differed in levels of innate dormancy (26-99%). In one experiment seed from a single Australian biotype, either enclosed in the spikelet glumes or having the spikelet glumes removed, were exposed to nine light treatments. Germination was stimulated by red and white light, but was inhibited by far-red light. Time to 50%, germination was less for seed enclosed in the spikelet glumes than for naked caryopses, although the final percentage of seed germinating when still enclosed in the spikelet glumes was significantly lower than for naked caryopses. In another experiment, six Australian and English biotypes with varying dormancy characteristics were exposed to eight light treatments. Red light did not stimulate germination in the deeply dormant biotype, however stimulated all other biotypes. Germination in darkness was below 20% in all biotypes except for one where germination was 51%. To overcome dormancy seeds were imbibed and placed in darkness at 16degreesC for either 7 or 14 days prior to exposure to red or white light for a single 15-min period. Dormancy in all biotypes was overcome indicating that a period of burial may decrease the dormancy level and increase seed sensitivity to light. This increased light sensitivity suggests that exposure to light during tillage may stimulate germination in P. paradoxa seed.
Resumo:
Hibbertia commutata (Steudel), H. amplexicaulis (Steudel), Chameascilla corymbosa [(R.Br.) F.Muell. Ex Benth.] and Leucopogon nutans (E. Pritzel) are four Australian species that are difficult to germinate during mine-site rehabilitation. Laboratory germination trails were conducted to identify dormancy mechanisms and to improve germination response. Treatments applied to all species included scarification and scarification followed by soaking seeds in smoke water (1, 5 or 10%) or gibberellic-acid solution (50, 200 or 1000 muM). Additional treatments with kinetin solution (50, 200 or 1000 muM) and smoke water (50 or 100%) were applied to scarified or unscarified seeds of C. corymbosa. Thermal-shock treatment was applied to L. nutans fruit, some of which were subsequently scarified and subjected to both smoke water (10%) and gibberellic-acid solution (1000 muM). Significant germination increases were obtained by using dormancy-breaking treatments on H. commutata ( from 12.8 to 76.0%), H. amplexicaulis (from 6.8 to 55.1%) and C. corymbosa (from 48.5 to 86.4%). Scarification alone increased germination of both Hibbertia species, suggesting that these species display a physical seed coat-imposed dormancy mechanism. Germination of H. amplexicaulis was further increased by the application of gibberellic-acid solution, indicating a possible embryo-imposed dormancy mechanism. Scarification followed by the application of smoke water produced the highest germination response for C. corymbosa seeds. Scarification alone did not significantly increase germination, inferring the existence of a smoke-responsive embryo dormancy mechanism. Seeds of L. nutans, although viable, failed to germinate and are thought to display complex seed coat- and embryo-imposed dormancy mechanisms.
Resumo:
The occurrence of the cyanobacterium Cylindrospermopsis raciborskii (Woloszynska) Seenayya and Subba Raju is a global water quality issue. The misidentification of C. raciborskii in the past is a major concern for water quality users, considering the reported cases of human and livestock poisonings associated with the cyanobacterium. Many of the available taxonomic descriptions for this species provide little or no detail of the morphology of early developmental phases that may assist with identification. Therefore, typifying the morphological changes throughout the entire life cycle for such a species requires urgent attention. In this study, five distinct morphological phases identified using a new culturing technique are reported for the process of akinete germination in C. raciborskii. Before the terminal emergence of three to four cell germlings through a ruptured akinete envelope (phase 3), mature akinetes (phase 1) elongated and the endospore separated from the akinete envelope (phase 2). After the association with the envelope was lost, four-cell germlings (phase 4a) matured into young trichomes of more than four cells (phase 4b). Throughout the process of germination, internal granular structures decreased in size and were irregular in shape in germlings and young trichomes. The culturing technique, which used a Sedgwick-Rafter cell, was successful in its application but was limiting in that the development of young trichomes after phase 4b could not be monitored.
Resumo:
Rhizoctonia solani AG-2-2 was isolated from wilting and dying plants of sulla ( Hedysarum coronarium), which is currently being assessed in eastern and southern Australia for its potential as a pasture and forage legume. Infected plants in the field had extensive rotting of the taproot, lateral roots and crown. Koch's postulates were fulfilled using three inoculation methods. The disease may pose a considerable threat to the potential use of H. coronarium in the dryland, grazing farming systems of Australia, with resistance offering the most viable option for minimising its impact.
Resumo:
Acacia angustissima has been proposed as a protein supplement in countries where low quality forages predominate. A number of non-protein amino acids have been identified in the leaves of A. angustissima and these have been linked to toxicity in ruminants. The non-protein amino acid 4-n-acetyl-2,4-diaminobutyric acid (ADAB) has been shown to be the major amino acid in the leaves of A. angustissima. The current study aimed to identify micro-organisms from the rumen environment capable of degrading ADAB by using a defined rumen-simulating media with an amino acid extract from A. angustissima. A mixed enrichment culture was obtained that exhibited substantial ADAB-degrading ability. Attempts to isolate an ADAB-degrading micro-organism were carried out, however no isolates were able to degrade ADAB in pure culture. This enrichment culture was also able to degrade the non-protein amino acids diaminobutyric acid (DABA) and diaminopropionic acid (DAPA) which have structural similarities to ADAB. Two isolates were obtained which could degrade DAPA. One isolate is a novel Grain-positive rod (strain LPLR3) which belongs to the Firmicutes and is not closely related to any previously isolated bacterium. The other isolate is strain LPSR1 which belongs to the Gammaproteobacteria and is closely related (99.93% similar) to Klebsiella pneumoniae subsp. ozaenae. The studies demonstrate that the rumen is a potential rich source of undiscovered micro-organisms which have novel capacities to degrade plant secondary compounds. (c) 2005 Elsevier B.V. All rights reserved.
A simulation model of cereal-legume intercropping systems for semi-arid regions I. Model development
Resumo:
Cereal-legume intercropping plays an important role in subsistence food production in developing countries, especially in situations of limited water resources. Crop simulation can be used to assess risk for intercrop productivity over time and space. In this study, a simple model for intercropping was developed for cereal and legume growth and yield, under semi-arid conditions. The model is based on radiation interception and use, and incorporates a water stress factor. Total dry matter and yield are functions of photosynthetically active radiation (PAR), the fraction of radiation intercepted and radiation use efficiency (RUE). One of two PAR sub-models was used to estimate PAR from solar radiation; either PAR is 50% of solar radiation or the ratio of PAR to solar radiation (PAR/SR) is a function of the clearness index (K-T). The fraction of radiation intercepted was calculated either based on Beer's Law with crop extinction coefficients (K) from field experiments or from previous reports. RUE was calculated as a function of available soil water to a depth of 900 mm (ASW). Either the soil water balance method or the decay curve approach was used to determine ASW. Thus, two alternatives for each of three factors, i.e., PAR/SR, K and ASW, were considered, giving eight possible models (2 methods x 3 factors). The model calibration and validation were carried out with maize-bean intercropping systems using data collected in a semi-arid region (Bloemfontein, Free State, South Africa) during seven growing seasons (1996/1997-2002/2003). The combination of PAR estimated from the clearness index, a crop extinction coefficient from the field experiment and the decay curve model gave the most reasonable and acceptable result. The intercrop model developed in this study is simple, so this modelling approach can be employed to develop other cereal-legume intercrop models for semi-arid regions. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Smallholder farmers in Africa practice traditional cropping techniques such as intercropping. Intercropping is thought to offer higher productivity and resource milisation than sole cropping. In this study, risk associated with maize-bean intercropping was evaluated by quantifying long-term yield in both intercropping and sole cropping in a semi-arid region of South Africa (Bloemfontein, Free State) with reference to rainfall variability. The crop simulation model was run with different cultural practices (planting date and plant density) for 52 summer crop growing seasons (1950/1951-2001/2002). Eighty-one scenarios, consisted of three levels of initial soil water, planting date, maize population, and bean population, were simulated. From the simulation outputs, the total land equivalent ratio (LER) was greater than one. The intercrop (equivalent to sole maize) had greater energy value (EV) than sole beans, and the intercrop (equivalent to sole beans) had greater monetary value (MV) than sole maize. From these results, it can be concluded that maize-bean intercropping is advantageous for this semi-arid region. Soil water at planting was the most important factor of all scenario factors, followed by planting date. Irrigation application at planting, November/December planting and high plant density of maize for EV and beans for MV can be one of the most effective cultural practices in the study region. With regard to rainfall variability, seasonal (October-April) rainfall positively affected EV and MV, but not LER. There was more intercrop production in La Nina years than in El Nino years. Thus, better cultural practices may be selected to maximize maize-bean intercrop yields for specific seasons in the semi-arid region based on the global seasonal outlook. (c) 2004 Elsevier B.V. All rights reserved.