27 resultados para LEARNING OBJECTS REPOSITORIES - MODELS
Resumo:
Background: The structure of proteins may change as a result of the inherent flexibility of some protein regions. We develop and explore probabilistic machine learning methods for predicting a continuum secondary structure, i.e. assigning probabilities to the conformational states of a residue. We train our methods using data derived from high-quality NMR models. Results: Several probabilistic models not only successfully estimate the continuum secondary structure, but also provide a categorical output on par with models directly trained on categorical data. Importantly, models trained on the continuum secondary structure are also better than their categorical counterparts at identifying the conformational state for structurally ambivalent residues. Conclusion: Cascaded probabilistic neural networks trained on the continuum secondary structure exhibit better accuracy in structurally ambivalent regions of proteins, while sustaining an overall classification accuracy on par with standard, categorical prediction methods.
Resumo:
Current Physiologically based pharmacokinetic (PBPK) models are inductive. We present an additional, different approach that is based on the synthetic rather than the inductive approach to modeling and simulation. It relies on object-oriented programming A model of the referent system in its experimental context is synthesized by assembling objects that represent components such as molecules, cells, aspects of tissue architecture, catheters, etc. The single pass perfused rat liver has been well described in evaluating hepatic drug pharmacokinetics (PK) and is the system on which we focus. In silico experiments begin with administration of objects representing actual compounds. Data are collected in a manner analogous to that in the referent PK experiments. The synthetic modeling method allows for recognition and representation of discrete event and discrete time processes, as well as heterogeneity in organization, function, and spatial effects. An application is developed for sucrose and antipyrine, administered separately and together PBPK modeling has made extensive progress in characterizing abstracted PK properties but this has also been its limitation. Now, other important questions and possible extensions emerge. How are these PK properties and the observed behaviors generated? The inherent heuristic limitations of traditional models have hindered getting meaningful, detailed answers to such questions. Synthetic models of the type described here are specifically intended to help answer such questions. Analogous to wet-lab experimental models, they retain their applicability even when broken apart into sub-components. Having and applying this new class of models along with traditional PK modeling methods is expected to increase the productivity of pharmaceutical research at all levels that make use of modeling and simulation.
Resumo:
Outdoor and Environmental Education Centres provide programs that are designed to address a range of environmental education aims, and contribute broadly to student learning for sustainability. This paper examines the roles such Centres can play, and how they might contribute to the Australian Government’s initiative in relation to sustainable schools. Interviews with the principals of 23 such Centres in Queensland revealed three roles or models under which they operate: the destination model; the expert/advisor model; and the partnership model. Principals’ understandings of these roles are discussed and the factors that support or hinder their implementation are identified. It is concluded that while the provision of programs in the environment is still a vital role of outdoor and environmental education centres, these can also be seen as a point of entry to long-term partnerships with whole school communities.
Resumo:
Pseudowords with inconsistent vs. consistent spellings (e.g., nurch, with rhyme neighbours search, lurch & perch, vs. mish, with neighbours dish, wish) were presented with definitions for naming either twice or 6 times. In an oral spelling test, there were main and interactive effects of consistency and the number of training trials on accuracy and main effects only on response latency, with the improvement in accuracy from 2 to 6 training trials greater for the more poorly learned inconsistent items. Of most interest, the smaller effect of training on accuracy in the consistent condition was reliable; contrary to the most obvious prediction of dual route spelling models that the sublexical procedure should produce correct spellings for consistent items early in training. In a second task students wrote spellings of multisyllabic words containing unstressed indeterminate (schwa) vowels. In their errors on the schwa vowel, students showed sensitivity to the most common spelling overall but also they were influenced by differences in schwa spellings in English words as a function of the number of syllables and schwa position. These results indicate that dual route models of spelling will need to accommodate the consistency of spellings within categories defined by lexical structure variables.
Resumo:
An emerging issue in the field of astronomy is the integration, management and utilization of databases from around the world to facilitate scientific discovery. In this paper, we investigate application of the machine learning techniques of support vector machines and neural networks to the problem of amalgamating catalogues of galaxies as objects from two disparate data sources: radio and optical. Formulating this as a classification problem presents several challenges, including dealing with a highly unbalanced data set. Unlike the conventional approach to the problem (which is based on a likelihood ratio) machine learning does not require density estimation and is shown here to provide a significant improvement in performance. We also report some experiments that explore the importance of the radio and optical data features for the matching problem.
Resumo:
Though technology holds significant promise for enhanced teaching and learning it is unlikely to meet this promise without a principled approach to course design. There is burgeoning discourse about the use of technological tools and models in higher education, but much of the discussion is fixed upon distance learning or technology based courses. This paper will develop and propose a balanced model for effective teaching and learning for “on campus” higher education, with particular emphasis on the opportunities for revitalisation available through the judicious utilisation of new technologies. It will explore the opportunities available for the creation of more authentic learning environments through the principled design. Finally it will demonstrate with a case study how these have come together enabling the creation of an effective and authentic learning environment for one pre-service teacher education course at the University of Queensland.
Resumo:
Foreign Exchange trading has emerged in recent times as a significant activity in many countries. As with most forms of trading, the activity is influenced by many random parameters so that the creation of a system that effectively emulates the trading process will be very helpful. In this paper we try to create such a system using Machine learning approach to emulate trader behaviour on the Foreign Exchange market and to find the most profitable trading strategy.
Resumo:
Even when data repositories exhibit near perfect data quality, users may formulate queries that do not correspond to the information requested. Users’ poor information retrieval performance may arise from either problems understanding of the data models that represent the real world systems, or their query skills. This research focuses on users’ understanding of the data structures, i.e., their ability to map the information request and the data model. The Bunge-Wand-Weber ontology was used to formulate three sets of hypotheses. Two laboratory experiments (one using a small data model and one using a larger data model) tested the effect of ontological clarity on users’ performance when undertaking component, record, and aggregate level tasks. The results indicate for the hypotheses associated with different representations but equivalent semantics that parsimonious data model participants performed better for component level tasks but that ontologically clearer data model participants performed better for record and aggregate level tasks.
Resumo:
Recovering position from sensor information is an important problem in mobile robotics, known as localisation. Localisation requires a map or some other description of the environment to provide the robot with a context to interpret sensor data. The mobile robot system under discussion is using an artificial neural representation of position. Building a geometrical map of the environment with a single camera and artificial neural networks is difficult. Instead it would be simpler to learn position as a function of the visual input. Usually when learning images, an intermediate representation is employed. An appropriate starting point for biologically plausible image representation is the complex cells of the visual cortex, which have invariance properties that appear useful for localisation. The effectiveness for localisation of two different complex cell models are evaluated. Finally the ability of a simple neural network with single shot learning to recognise these representations and localise a robot is examined.