50 resultados para Kungliga Biblioteket (KB)
Resumo:
Within steroid receptor heterocomplexes the large tetraticopeptide repeat-containing immunophilins, cyclophilin 40 (CyP40), FKBP51, and FKBP52, target a common interaction site in heat shock protein 90 (HspSO) and act coordinately with HspSO to modulate receptor activity. The reversible nature of the interaction between the immunophilins and HspSO suggests that relative cellular abundance might be a key determinant of the immunophilin component within steroid receptor complexes. To investigate CyP40 gene regulation, we have isolated a fi-kilobase (kb) 5 ' -flanking region of the human gene and demonstrated that a similar to 50 base pair (bp) sequence adjacent to the transcription start site is essential for CyP40 basal expression. Three tandemly arranged Ets sites within this critical region were identified as binding elements for the multimeric Ets-related transcription factor, GA binding protein (GABP). Functional studies of this proximal promoter sequence, in combination with mutational analysis, confirmed these sites to be crucial for basal promoter function. Furthermore, overexpression of both GABP alpha and GABP beta subunits in Cos1 cells resulted in increased endogenous CyP40 mRNA levels. Significantly, a parallel increase in FKBP52 mRNA expression was not observed, highlighting an important difference in the mode of regulation of the CyP40 and FKBP52 genes. Our results identify GABP as a key regulator of CyP40 expression. GAFF is a common target of mitogen and stress-activated pathways and may integrate these diverse extracellular signals to regulate CyP40 gene expression.
Resumo:
Dendritic cells (DC) are the potent antigen presenting cells which modulate T cell responses to self or non-self antigens. DC play a significant role in the pathogenesis of autoimmune diseases, inflammation and infection, but also in the maintenance of tolerance. NF-kappaB, particularly RelB is a crucial pathway for myeloid DC differentiation and functional maturation. While the current paradigm is that mature, nuclear RelB+ DC prime T cells for immunity/autoimmunity and immature DC for tolerance, RelB-deficient mice paradoxically develop generalised systemic autoimmune inflammatory disease with myelopoiesis and splenomegaly. Previous studies suggested abnormal DC differentiation in healthy relatives of type 1 diabetes (t1dm) patients. Therefore, we compared NF- kB activation in monocyte-derived DC from t1dm and non-t1dm controls in response to LPS. While resting DC appeared normal, DC from 6 out of 7 t1dm patients but no t2dm or rheumatoid arthritis patients failed to translocate NF- kB subunits to the nucleus in response to LPS, along with a failure to up-regulate expression of cell surface CD40 and MHC class I. NF- kB subunit mRNA increased normally in t1dm DC after LPS. Both the classical or non-canonical NF- kB pathways were affected as both TNF-a and CD40 stimulation led to a similarly abnormal NF- kB response. In contrast, expression of phosphorylated p38 MAPK and pro-inflammatory cytokine production was intact. These abnormalities in NF- kB activation appear to be generally and specifically applicable at a post-translational level in t1dm, and have the capacity to profoundly influence immunoregulation in affected individuals.
Resumo:
In this paper we describe the assembly and restriction map of a 1.05-Mb cosmid contig spanning the candidate region for familial Mediterranean fever (FMF), a recessively inherited disorder of inflammation localized to 16p13.3. Using a combination of cosmid walking and screening for P1, PAC, BAG, and YAC clones, we have generated a contig of genomic clones spanning similar to 1050 kb that contains the FMF critical region. The map consists of 179 cosmid, 15 P1, 10 PAC, 3 BAG, and 17 YAC clones, anchored by 27 STS markers. Eight additional STSs have been developed from the similar to 700 kb immediately centromeric to this genomic region. Five of the 35 STSs are microsatellites that have not been previously reported. NotI and EcoRI mapping of the overlapping cosmids, hybridization of restriction fragments from cosmids to one another, and STS analyses have been used to validate the assembly of the contig. Our contig totally subsumes the 250-kb interval recently reported, by founder haplotype analysis, to contain the FMF gene. Thus, our high-resolution clone map provides an ideal resource for transcriptional mapping toward the eventual identification of this disease gene. (C) 1997 Academic Press.
Resumo:
We showed in 1988 that there are two strains of Chlamydia psittaci which infect the koala (Phascolarctos cinereus). In order to further investigate the role of these chlamydial strains in pathogenesis, we have attempted to identify genes of koala type I strain chlamydial which are involved in the immunogenic response, Transformation of Escherichia coli with a plasmid containing a 6.3-kb fragment (pKOC-10) of C. psittaci DNA caused the appearance of a specific chlamydial lipopolysaccharide (LPS) epitope on the host strain. The smallest DNA fragment capable of inducing the expression of chlamydial LPS was an Xbal fragment, 2.4 kb in size (pKOC-5). DNA sequence analysis of the complete fragment revealed regions of high identity, at the amino acid level, to the gseA genes of C. pneomoniae, C. psittaci 6BC and C. trachomatis, and the kdtA gene of E. coli which code for transferases catalysing the addition of 3-deoxy-D-manno-octulosonic acid (Kdo) residues to lipid A. Two open reading frames (ORFs) of 1,314 and 501 nucleotides in size, within the 2.4-kb fragment, were evident, and mRNA species corresponding to these ORFs were detected by Northern analysis. Both ORF1 and ORF2 are required for the appearance of chlamydia-specific LPS on the surface of recombinant E. coli.
Resumo:
Familial Mediterranean fever (FMF) is a recessively inherited disorder characterized by dramatic episodes of fever and serosal inflammation. This report describes the cloning of the gene likely to cause FMF from a 115-kb candidate interval on chromosome 16p. Three different missense mutations were identified in affected individuals, but not in normals. Haplotype and mutational analyses disclosed ancestral relationships among carrier chromosomes in populations that have been separated for centuries. The novel gene encodes a 3.7-kb transcript that is almost exclusively expressed in granulocytes. The predicted protein, pyrin, is a member of a family of nuclear factors homologous to the Ro52 autoantigen. The cloning of the FMF gene promises to shed light on the regulation of acute inflammatory responses.
Resumo:
Familial Mediterranean fever (FMF) is a recessive disorder of inflammation caused by mutations in a gene (designated MEFV) on chromosome 16p13.3, We have recently constructed a 1-Mb cosmid contig that includes the FMF critical region. Here we show genotype data for 12 markers from our physical map, including 5 newly identified microsatellites, in FMF families. Intrafamilial recombinations placed MEFV in the similar to 285 kb between D16S468/D16S3070 and D16S3376. We observed significant linkage disequilibrium in the North African Jewish population, and historical recombinants in the founder haplotype placed MEFV between D16S3082 and D16S3373 (similar to 200 kb). In smaller panels of Iraqi Jewish, Arab, and Armenian families, there were significant allelic associations only for D16S3370 and D16S2617 among the Armenians. A sizable minority of Iraqi Jewish and Armenian carrier chromosomes appeared to be derived from the North African Jewish ancestral haplotype. We observed a unique FMF haplotype common to Iraqi Jews, Arabs, and Armenians and two other haplotypes restricted to either the Iraqi Jewish or the Armenian population. These data support the view that a few major mutations account for a large percentage of the cases of FMF and suggest that same of these mutations arose before the affected Middle Eastern populations diverged from one another. (C) 1997 Academic Press.
Resumo:
Inactivation of p16(INK4a) and/or activation of cyclin-dependent kinase-4 (CDK4) are strongly associated with both susceptibility and progression in melanoma. Activating CDK4 mutations prevent the binding and inhibition of CDK4 by p16(INK4a). A second, more indirect role for CDK4 is in late G(1), where It may sequester the inhibitors p27(KIP1) or p21(CIP1) away from CDK2, and in doing so upregulate the CDK2 activity necessary for cells to proceed completely through G(1) into S phase. As the pivotal residues around the most predominant R24C activating CDK4 mutation are invariant between CDK2 and CDK4, we speculated that the pivotal arginine (position 22 in CDK2), or a nearby residue, may be mutated in some melanomas, resulting in the diminution of its binding and inhibition by p27(KIP1) or p21(CIP1). However, except for a silent polymorphism, we detected no variants within this region of the CDK2 gene in 60 melanoma cell lines. Thus, if CDK2 activity is dysregulated in melanoma it is likely to occur by a means other than mutations causing loss of direct inhibition. We also examined the expression of the CDK2 gene in melanoma cell lines, to assess its possible co-regulation with the gene for the melanocyte-lineage antigen pmel17, which maps less than 1 kb away in head to head orientation with CDK2 and may be transcribed off the same bidirectional promoter. However, expression of the genes is not co-regulated. (C) 2001 Lippincott Williams & Wilkins.
Resumo:
This study investigates the hierarchy of cytotoxic T cell (CTL) responses to twelve HLA A2-restricted epitopes from the latent, lytic and structural proteins of Epstein–Barr virus (EBV) in acute infectious mononucleosis and in healthy seropositive donors and the relative immunogenecity of these epitopes in transgenic mice. Responses to the lytic epitope were uniformly strong in all healthy seropositive individuals and acute infectious mononucleosis donors while moderate or low responses were observed to the latent and structural epitopes, respectively in both groups studied. In contrast, when HLA A2/Kb transgenic mice were immunised with these peptide epitopes, CTL responses were observed to all epitopes with a maximal response to the epitopes within the structural proteins and low to moderate responses to the latent epitopes. This hierarchy of CTL responses in mice was also reflected in an MHC stabilisation analysis. These contrasting CTL responses in humans following natural infection compared to the immunogenicity of these epitopes and their ability to stabilise MHC may need to be considered when designing an EBV vaccine.
Resumo:
To investigate the efficiency of encapsidation of plasmid by papillomavirus virus-like particles (PV VLPs), and the infectivity of the resultant PV pseudovirions, Cos-1 cells were transfected with an 8-kb plasmid incorporating a green fluorescent protein (GFP) reporter gene (pGSV), and infected with bovine PV (BPV-1) L1/L2 recombinant vaccinia virus to produce BPV1 pseudovirions. Approximately 1 in 1.5x10(4) of dense (1.35 g/ml) PV pseudovirions and 0.3 in 10(4) Of less-dense (1.29 g/ml) pseudovirions packaged an intact pGSV plasmid. The majority (>75%) of packaged plasmids contained deletions, and the deletions affected all tested genes. After exposure of Cos-1 cells to BPV-1 pseudovirions at an MOI of 40,000:1, 6% of cells expressed GFP giving a calculated efficiency of delivery of the pGSV plasmid, by pseudovirions which had packaged an intact plasmid, of approximately 5%. Plasmid delivery was not effected by purified pGSV plasmid, was blocked by antiserum against BPV-1, and was not blocked by DNase treatment of pseudovirions, confirming that delivery was mediated by DNA within the pseudovirion. We conclude that a major limitation to the use of PV pseudovirions as a gene delivery system is that intact plasmid DNA is not efficiently selected for packaging by VLPs in cell-based pseudovirions production systems.
Resumo:
Frizzled genes encode a family of Wnt ligand receptors, which have a conserved cysteine-rich Wnt binding domain and include both transmembrane and secreted forms. Work by others has shown that experimental perturbation of Wnt signaling results in aberrant hair formation, hair growth, and hair structure. To date, however, there is no information on the contribution of individual Frizzled proteins to hair development. We now report that Frizzled-3 expression in skin is restricted to the epidermis and to the developing hair follicle. Northern analysis on total mouse skin mRNA revealed a single Frizzled-3 transcript of 3.7 kb. Reverse transcription-polymerase chain reaction and in situ hybridization analysis revealed Frizzled-3 expression in epidermal and hair follicle keratinocytes. Frizzled-3 transcripts are first detected in discrete foci in the developing epidermis of 13 d embryos and later in the hair follicle placodes of 15 d embryos, suggesting a role for this Frizzled isoform in follicle development. In 17 d embryos and id old newborn mice Frizzled-3 expression is limited to suprabasal keratinocytes and is not seen in pelage follicles until 3 d postpartum. In 7 d old neonatal skin, Frizzled-3 is expressed throughout the epidermis and in the outer cell layers of hair follicles. We have also identified the mRNA encoding human Frizzled-3 in epidermal keratinocytes and in the HaCaT keratinocyte cell line. Human Frizzled-3 mRNA encodes a 666 amino acid protein with 97.8% identity to the mouse protein. The human Frizzled-3 gene was mapped using a radiation-hybrid cell line panel to the short arm of chromosome 8 between the markers WI-1172 and WI-8496 near the loci for the Hypotrichosis of Marie Unna and Hairless genes.
Resumo:
The toxicities and uptake mechanisms of two hepatotoxins, namely cylindrospermopsin and lophyrotomin, were investigated on primary rat hepatocytes by using microcystin-LIZ (a well-known hepatotoxin produced by cyanobacteria) as a comparison. Isolated rat hepatocytes were incubated with different concentrations of hepatotoxins for 0, 24, 48 and 72 h. The cell viability was assayed by the tetrazolium-based (MTT) assay. Microcystin-LR, cylindrospermopsin and lophyrotomin all exhibited toxic effects on the primary rat hepatocytes with 72-h LC50 of 8, 40 and 560 ng/ml, respectively. The involvement of the bile acid transport system in the hepatotoxin-induced toxicities was tested in the presence of two bile acids, cholate and taurocholate. Results showed that the bile acid transport system was responsible for the uptake, and facilitated the subsequent toxicities of lophyrotomin on hepatocytes. This occurred to a much lesser extent with cylindrospermopsin. With its smaller molecular weight, passive diffusion might be one of the possible mechanisms for cylindrospermopsin uptake into hepatocytes. This was supported by incubating a permanent cell line, KB (devoid of bile acid transport system), with cylindrospermopsin which showed cytotoxic effects. No inhibition of protein phosphatase 2A by cylindrospermopsin or lophyrotomin was found. This indicated that other toxic mechanisms besides protein phosphatase inhibition were producing the toxicities of cylindrospermopsin and lophyrotomin, and that they were unlikely to be potential tumor promoters. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Complete sequences were obtained for the coding portions of the mitochondrial (mt) genomes of Schistosoma mansoni (NMRI strain, Puerto Rico; 14415 bp), S. japonicum (Anhui strain, China; 14085 bp) and S. mekongi (Khong Island, Laos; 14072 bp). Each comprises 36 genes: 12 protein-encoding genes (cox1-3, nad1-6, nad4L, atp6 and cob); two ribosomal RNAs, rrnL (large subunit rRNA or 16S) and rrnS (small subunit rRNA or 12S); as well as 22 transfer RNA (tRNA) genes. The atp8 gene is absent. A large segment (9.6 kb) of the coding region (comprising 14 tRNAs, eight complete and two incomplete protein-encoding genes) for S. malayensis (Baling, Malaysian Peninsula) was also obtained. Each genome also possesses a long non-coding region that is divided into two parts (a small and a large non-coding region, the latter not fully sequenced in any species) by one or more tRNAs. The protein-encoding genes are similar in size, composition and codon usage in all species except for cox1 in S. mansoni (609 aa) and cox2 in S. mekongi (219 an), both of which are longer than homologues in other species. An unexpected finding in all the Schistosoma species was the presence of a leucine zipper motif in the nad4L gene. The gene order in S. mansoni is strikingly different from that seen in the S. japonicum group and other flatworms. There is a high level of identity (87-94% at both the nucleotide and amino acid levels) for all protein-encoding genes of S. mekongi and S. malayensis. The identity between genes of these two species and those of S. japonicum is less (56-83% for amino acids and 73-79 for nucleotides). The identity between the genes of S. mansoni and the Asian schistosomes is far less (33-66% for amino acids and 54-68% for nucleotides), an observation consistent with the known phylogenetic distance between S. mansoni and the other species. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
SOX9 is a transcription factor that plays a key role in chondrogenesis, Aggrecan is one of the major structural components in cartilage; however, the molecular mechanism of aggrecan gene regulation has not yet been fully elucidated, TC6 is a clonal chondrocytic cell line derived from articular cartilage, The purpose of this study was to examine whether SOX9 modulates aggrecan gene expression and to further identify molecules that regulate Sox9 expression in TC6 cells. SOX9 overexpression in TC6 cells enhanced by similar to 3-fold the transcriptional activity of the AgCAT-8 construct containing S-kilobase (kb) promoter/first exon/first intron fragments of the aggrecan gene. SOX9 enhancement of aggrecan promoter activity was lost when we deleted a 4.5-kb fragment from the 3'-end of the 8-kb fragment corresponding to the region including the first intron, In TC6 cells, SOX9 enhanced the transcriptional activity of a reporter construct containing the Sry/Sox consensus sequence >10-fold. SOX9 enhancement of aggrecan gene promoter activity and SOX9 transactivation through the Sry/Sox consensus sequence were not observed in osteoblastic osteosarcoma cells (ROS17/2.8), indicating the dependence on the cellular background. Northern blot analysis indicated that TC6 cells constitutively express Sox9 mRNA at relatively low levels. To examine regulation of Sox9 gene expression, we investigated the effects of calciotropic hormones and cytokines, Among these, retinoic acid (RA) specifically enhanced Sox9 mRNA expression in TC6 cells. The basal levels of Sox9 expression and its enhancement by RA were observed similarly at both permissive (33 degrees C) and nonpermissive (39 degrees C) temperatures. Furthermore, RA treatment enhanced the transcriptional activity of a reporter construct containing the Sry/Sox consensus sequence in TC6 cells. Moreover, RA treatment also enhanced the transcriptional activity of another reporter construct containing the enhancer region of the type II procollagen gene in TC6 cells. These observations indicate that SOX9 enhances aggrecan promoter activity and that its expression is up-regulated by RA in TC6 cells.
Resumo:
The complete sequence of the MCIR locus has been assembled, the coding region of the gene is intronless and placed within a 12 kb region flanked by the NULP1 and TUBB4 genes. The immediate promoter region has an E-box site with homology to the M-box consensus known to bind the microphthalmia transcription factor (MITF), however, promoter deletion analysis and transactivation studies have failed to show activation through this element by MITF. Polymorphism within the coding region, immediate 5' promoter region and a variable number tandem repeat (VNTR) minisatellite within the locus have been examined in a collection of Caucasian families and African individuals. Haplotype analysis shows linkage disequilibrium between the VNTR and MCIR coding region red hair variant alleles which can be used to estimate the age of these missense changes. Assuming a mean VNTR mutation rate of 1% and a star phylogeny, we estimate the Arg151Cys variant arose 7500 years before the present day, suggesting these variants may have arisen in the Caucasian population more recently than previously thought. (C) 2001 Published by Elsevier Science B.V.
Resumo:
The NS5 protein of the flavivirus Kunjin (KUN) contains conserved sequence motifs characteristic of RNA-dependent RNA polymerase (RdRp) activity. To investigate this activity in vitro, recombinant NS5 proteins with C-terminal (NS5CHis) and N-terminal (NS5NHis) hexahistidine tags were produced in baculovirus-infected insect cells and purified to near homogeneity by nickel affinity chromatography. Purified NS5CHis exhibited RdRp activity with both specific (9 kb KUN replicon) and non-specific (8.3 kb Semliki Forest virus replicon) RNA templates; this activity did not require the presence of additional viral and/or cellular cofactors. RdRp activity of purified NS5NHis protein was reduced in comparison to NS5CHis, while purified NS5NHis incorporating a GDD -> GVD mutation within the polymerase active site (NS5GVD) lacked RdRp activity. RNase A digestion of the RdRp reaction products indicated that they were double-stranded and of a similar size to the KUN replicative form produced in Vero cells, thus demonstrating that the KUN NS5 protein has an intrinsic, albeit low and non-specific RdRp activity in vitro, similar to that reported for recombinant RdRp of other flaviviruses. However, in contrast to RNA polymerases of other Flavivirus species, purified KUN NS5 polymerase produced a single, full-length replicon RNA product, thus demonstrating efficient processivity. (C) 2001 Elsevier Science B.V. All rights reserved.