22 resultados para King, Martin Luther 1929-1968. Biografía
Resumo:
Benedenia Diesing, 1858, a genus of capsalid (benedeniine) monogeneans, is redefined. The generic diagnosis is amended to include: the path of tendons in the haptor from extrinsic muscles in the body; presence and form of the marginal valve; a penis occupying a penis canal with weakly muscular wall; a weakly muscular accessory gland reservoir proximal to the penis and enclosed by a proximal extension of the wall of the penis canal; male and female genital apertures usually common, rarely separate; vagina with pore usually close to the common genital pore but may open in mid body between the germarium and the common genital pore, or anterior to the common genital pore. A conservative approach is adopted and the generic diagnosis is clarified and broadened to accommodate species that display some variation in reproductive anatomy, especially of the female system. We argue against potential alternative actions such as defining Benedenia strictly to contain species with separate male and female genital apertures and against recognition of a separate genus, Tareenia Hussey, 1986, for species with a vaginal pore anterior to the common genital pore. Under our conception, Benedenia comprises 21 species: B. sciaenae (van Beneden, 1856) Odhner, 1905 (type species); B. acanthopagri (Hussey, 1986) comb. nov.; B. anticavaginata Byrnes, 1986; B. bodiani Yamaguti, 1968; B. elongata (Yamaguti, 1968) Egorova, 1997; B. epinepheli (Yamaguti, 1937) Meserve, 1938; B. hawaiiensis Yamaguti, 1968; B. hendorffi(von Linstow, 1889) Odhner, 1905; B. hoshinai Ogawa, 1984; B. innobilitata Burhnheim Gomes and Varela, 1973: B. jaliscana Bravo-Hollis, 1952; B. lolo Yamaguti, 1968; B. lutjani Whittington and Kearn, 1993: B. monticellii (Parona and Perugia, 1895) Johnston, 1929; B. ovata (Goto, 1894) Johnston. 1929: B. pompatica Burhnheim, Gomes and Varela, 1973; B. rohdei Whittington, Kearn and Beverley-Burton, 1994; B. scari Yamaguti, 1968; B. sekii (Yamaguti, 1937) Meserve, 1938; B, seriolae (Yamaguti, 1934) Meserve, 1938; and B. synagris Yamaguti, 1953. The type species, B. sciaenae, is redescribed based on new material from Australia. No types for this taxon were designated and we have assigned a series of voucher specimens. Tareenia acanthopagri Hussey, 1986 becomes B. acanthopagri (Hussey, 1986) comb. nov. and T. anticavaginata (Byrnes, 1986) Egorova, 1997 and T. lutjani (Whittington and Kearn, 1993) Egorova, 1997 are returned to Benedenia as B. anticavaginata and B. lutjani Benedenia akaisaki Iwata, 1990 is considered a synonym of B. ovata and B. kintoki Iwata, 1990 is considered a synonym of B. elongata. Two species, B, madai Ishii and Sawada, 1938 and B. pagrosomi Ishii and Sawada, 1938, are considered species inquirendae. Based on the redefinition of Benedenia, the diagnosis for the Benedeniinae is amended. Tareenia is synonymized with Benedenia but Menziesia Gibson, 1976 is recognized and its generic diagnosis amended to include: anterior attachment organs tending to form a 'hooded' appearance; prominent anterior gland cells between the pharynx and the anterior margin of the body: long penis, tapering proximally, occupying a penis canal with weakly muscular wall: penis canal and penis describe a sigmoid; accessory gland reservoir dorsal and alongside, or posterior and lateral to, proximal end of the penis and enclosed by a proximal extension of the wall of the penis canal. Under this conception. Menziesia comprises: M. noblei (Menzies. 1946) Gibson, 1976 (type species); M. malaboni (Velasquez. 1982) comb. nov.: M. merinthe (Yamaguti, 1968) Gibson. 1976: M. ovalis (Yamaguti, 1968) Gibson, 1976: and M. sebastodis (Yamaguti, 1934) comb, nov. A key to valid species of Benedenia and Menziesia is provided and a list is presented of published records of undescribed or unattributed species of Benedenia. Some protocols are suggested for preparation of benedeniine material to enhance future taxonomic studies and comparisons. The host-specificity and geographic distribution of species in these revised genera are discussed. The composition of the Capsalidae is discussed and some difficulties in defining and distinguishing between its different subfamilies are considered.
Resumo:
Background Twin and family studies have shown that genetic effects explain a relatively high amount of the phenotypic variation in blood pressure. However, many studies have not been able to replicate findings of association between specific polymorphisms and diastolic and systolic blood pressure. Methods In a structural equation-modelling framework the authors investigated longitudinal changes in repeated measures of blood pressures in a sample of 298 like-sexed twin pairs from the population-based Swedish Twin Registry. Also examined was the association between blood pressure and polymorphisms in the angiotensin-I converting enzyme and the angiotensin 11 receptor type 1 with the 'Fulker' test Both linkage and association were tested simultaneously revealing whether the polymorphism is a Quantitative Trait Locus (QTL) or in linkage disequilibrium with the QTL. Results Genetic influences explained up to 46% of the phenotypic variance in diastolic and 63% of the phenotypic variance in systolic blood pressure. Genetic influences were stable over time and contributed up to 78% of the phenotypic correlation in both diastolic and systolic blood pressure. Non-shared environmental effects were characterised by time specific influences and little transmission from one time point to the next. There was no significant linkage and association between the polymorphisms and blood pressure. Conclusions There is a considerable genetic stability in both diastolic and systolic blood pressure for a 6-year period of time in adult life. Non-shared environmental influences have a small long-term effect Although associations with the polymorphisms could not be replicated, results should be interpreted with caution due to power considerations. (C) 2002 Lippincott Williams Wilkins.
Resumo:
Evidence suggesting polyphyly of the traditionally recognised tick genus Aponomma Neumann, 1899 is summarized. Continued recognition of this genus in its current concept leaves a polyphyletic genus Aponomma and a paraphyletic genus Amblyomma Koch, 1844. To improve the correlation between our understanding of phylogenetic relationships in metastriate ticks and their classification, a few changes in classification are proposed. The members of the 'indigenous Australian Aponomma' group (sensu Kaufman, 1972), A. auruginans Schulze, 1936, A. concolor Neumann, 1899, A. glebopalma Keirans, King & Sharrad, 1994, A. hydrosauri (Denny, 1843) and A. undatum (Fabricius, 1775), are transferred to Bothriocroton Keirans, King & Sharrad, 1994, which is raised to full generic rank. The remaining members of Aponomma are transferred to Amblyomma. Uncertainty remains on relationships of Bothriocroton to other metastriate lineages and on the systematic position of the two species formerly included in the 'primitive Aponomma' group, A. elaphense Price, 1959 and A. sphenodonti Dumbleton, 1943.
Resumo:
Offspring sex ratios were examined at the population and family level in the sexually monomorphic, socially monogamous fairy martin Petrochelidon ariel at five colony sites over a 4-year period (1993 1996). The sex of 465 nestlings from 169 broods % as determined using sex-specific PCR at the CHD locus. In accordance with predicted sex allocation patterns, population sex ratios at hatching and fledging did not differ from parity in an), year and the variance in brood sex ratios did not deviate from the binomial distribution, Further, brood sex ratio did not vary with hatching date during the season, brood number, brood size or colony size, The sex ratio or broods with extra-pair young did not differ from those without, while the sex ratio of broods fathered by males that gained extra-pair fertilizations did not differ from broods fathered by other males. Extra-pair chicks were as likely to be male as female. Neither the total number of feeding visits to the brood nor the relative feeding contribution by the sexes varied significantly with brood sex ratio. Brood sex ratios were also unrelated to paternal size, condition and breeding experience or maternal condition and breeding experience, However, contrary to our prediction, brood sex ratio was negatively correlated with maternal size. Generally, these results were consistent with our expectations that brood sex ratios would not vary with environmental factors or parental characteristics, and would not influence the level of parental provisioning. However, the finding that females with longer tarsi produced an excess of daughters is difficult to reconcile with our current understanding or fairy martin life history and breeding ecology.