69 resultados para Kinetics (polymer)
Resumo:
This paper presents a comprehensive and critical review of the mechanisms and kinetics of NO and N2O reduction reaction with coal chars under fluidised-bed combustion conditions (FBC). The heterogeneous reactions of NO and N2O with char/carbon surface have been well recognised as the most important processes in reducing both NOx and N2O in situ FBC. Compared to NO-carbon reactions in FBC, the reactions of N2O with chars have been relatively less understood and studied. Beginning with the overall reaction schemes for both NO and N2O reduction, the paper extensively discusses the reaction mechanisms including the effects of active surface sites. Generally, NO- and N2O-carbon reactions follow a series of step reactions. However, questions remain concerning the role of adsorbed phases of NO and N2O, and the behaviour of different surface sites. Important kinetics factors such as the rate expressions, kinetics parameters as well as the effects of surface area and pore structure are discussed in detail. The main factors influencing the reduction of NO and N2O in FBC conditions are the chemical and physical properties of chars, and the operating parameters of FBC such as temperature, presence of CO, O-2 and pressure. It is shown that under similar conditions, N2O is more readily reduced on the char surface than NO. Temperature was found to be a very important parameter in both NO and N2O reduction. It is generally agreed that both NO- and N2O-carbon reactions follow first-order reaction kinetics with respect to the NO and N2O concentrations. The kinetic parameters for NO and N2O reduction largely depend on the pore structure of chars. The correlation between the char surface area and the reactivities of NO/N2O-char reactions is considered to be of great importance to the determination of the reaction kinetics. The rate of NO reduction by chars is strongly enhanced by the presence of CO and O-2, but these species may not have significant effects on the rate of N2O reduction. However, the presence of these gases in FBC presents difficulties in the study of kinetics since CO cannot be easily eliminated from the carbon surface. In N2O reduction reactions, ash in chars is found to have significant catalytic effects, which must be accounted for in the kinetic models and data evaluation. (C) 1997 Elsevier Science Ltd.
Resumo:
A gas product analysis has been conducted on gamma-irradiated samples of poly(lactic acid) (PLA) and poly(glycolic acid) (PGA) by means of gas chromatography. The major volatile products have been identified to be CO, CO2, CH4 and C2H6 for PLA, and CO and CO2 for PGA. In addition, the yield of evolved gases for PLA has been found to be 1.81 for CO2, 0.98 for CO, 0.026 for CH4 and 0.012 for C2H6; and that for PGA to be 1.70 for CO2 and 0.42 for CO. The new chain ends formed due to gamma-induced bond cleavage in PLA have been assigned to CH3-CH2-CO-O- and CH3-CH2-O-CO-, and the G values for formation of these chain ends were found to be 1.9 and 0.6, respectively. The G value for chain scission reported previously of 2.3 is comparable with that for the formation of the propanoic acid end group. (C) 1997 Elsevier Science Limited.
Resumo:
1 The hepatic disposition and metabolite kinetics of a homologous series of O-acyl (acetyl, propionyl, butanoyl, pentanoyl, hexanoyl and octanoyl) esters of salicylic acid (C2SA, C3SA, C4SA, C5SA, C6SA and C8SA, respectively) was determined using a single-pass, in-sills rat liver preparation. 2 The hepatic venous outflow profiles for the parent esters and the generated metabolite, salicylic acid (SA) were analysed by HPLC. Non-parametric moments analysis was used to determine the area under the curve (AUC'), mean transit time (MTT) and normalized variance (CV2) for the parent esters and generated SA. 3 Pregenerated SA ([C-14]-salicylic acid) was injected into each liver with the parent ester to determine its distribution characteristics. 4 The overall recovery of ester plus metabolite was 89% of the ester dose injected and independent of the ester carbon number, suggesting that ester extraction was due to hepatic metabolism to salicylic acid. 5 The metabolite AUC' value increased directly with the lipophilicity of the parent ester (from 0.12 for C2SA to 0.95 for C8SA). By contrast, the parent AUC' decreased with the lipophilicity (from 0.85 for C2SA to zero for C8SA). The metabolite MTT value also showed a trend to increase with the lipophilicity of the parent ester (from 15.72 s for C3SA to 61.97 s for C8SA). However, the parent MTT value shows no significant change across the series. 6 The two-compartment dispersion model was used to derive the kinetic parameters for parent ester, pregenerated SA and generated SA. Consequently, these parameters were used to estimate the values of AUG', MITT and CV2 for the parent ester and metabolite. The moments values obtained using the two-compartment dispersion model show similar trends to the corresponding moments values obtained from the outflow profiles using a non-parametric approach. 7 The more lipophilic aspirin analogues are more confined to the portal circulation after oral administration than aspirin due to their more extensive hepatic elimination avoiding systemic prostacyclin inhibition. Given that aspirin's selectivity as an anti-thrombotic agent has been postulated to be due to selective anti-platelet effects in the portal circulation, the more lipophilic and highly extracted analogues are potentially more selective anti-thrombotic agents than aspirin.
Resumo:
The hepatic disposition and metabolite kinetics of a homologous series of diflunisal O-acyl esters (acetyl, butanoyl, pentanoyl, anti hexanoyl) were determined using a single-pass perfused in situ rat liver preparation. The experiments were conducted using 2% BSA Krebs-Henseleit buffer (pH 7.4), and perfusions were performed at 30 mL/min in each liver. O-Acyl esters of diflunisal and pregenerated diflunisal were injected separately into the portal vein. The venous outflow samples containing the esters and metabolite diflunisal were analyzed by high performance liquid chromatography (HPLC). The normalized outflow concentration-time profiles for each parent ester and the formed metabolite, diflunisal, were analyzed using statistical moments analysis and the two-compartment dispersion model. Data (presented as mean +/- standard error for triplicate experiments) was compared using ANOVA repeated measures, significance level P < 0.05. The hepatic availability (AUC'), the fraction of the injected dose recovered in the outflowing perfusate, for O-acetyldiflunisal (C2D = 0.21 +/- 0.03) was significantly lower than the other esters (0.34-0.38). However, R-N/f(u), the removal efficiency number R-N divided by the unbound fraction in perfusate f(u), which represents the removal efficiency of unbound ester by the liver, was significantly higher for the most lipophilic ester (O-hexanoyldiflunisal, C6D = 16.50 +/- 0.22) compared to the other members of the series (9.57 to 11.17). The most lipophilic ester, C6D, had the largest permeability surface area (PS) product (94.52 +/- 38.20 mt min-l g-l liver) and tissue distribution value VT (35.62 +/- 11.33 mL g(-1) liver) in this series. The MTT of these O-acyl esters of diflunisal were not significantly different from one another. However, the metabolite diflunisal MTTs tended to increase with the increase in the parent ester lipophilicity (11.41 +/- 2.19 s for C2D to 38.63 +/- 9.81 s for C6D). The two-compartment dispersion model equations adequately described the outflow profiles for the parent esters and the metabolite diflunisal formed from the O-acyl esters of diflunisal in the liver.
Resumo:
The identity of the potassium channel underlying the slow, apamin-insensitive component of the afterhyperpolarization current (sl(AHP)) remains unknown. We studied sl(AHP) in CA1 pyramidal neurons using simultaneous whole-cell recording, calcium fluorescence imaging, and flash photolysis of caged compounds. Intracellular calcium concentration ([Ca2+](i)) peaked earlier and decayed more rapidly than sl(AHP). Loading cells with low concentrations of the calcium chelator EGTA slowed the activation and decay of sl(AHP). In the presence of EGTA, intracellular calcium decayed with two time constants. When [Ca2+](i) was increased rapidly after photolysis of DM-Nitrophen, both apamin-sensitive and apamin-insensitive outward currents were activated. The apamin-sensitive current activated rapidly (<20 msec), whereas the apamin-insensitive current activated more slowly (180 msec). The apamin-insensitive current was reduced by application of serotonin and carbachol, confirming that it was caused by sl(AHP) channels. When [Ca2+](i) was decreased rapidly via photolysis of diazo-2, the decay of sl(AHP) was similar to control (1.7 sec). All results could be reproduced by a model potassium channel gated by calcium, suggesting that the channels underlying sl(AHP) have intrinsically slow kinetics because of their high affinity for calcium.
Resumo:
This paper reports the results of an experimental investigation into the fluidized-bed coating of cylindrical metal specimens using two types of thermoplastic powders, Rilsan(R) PA11, a nylon-11 powder produced by Elf Atochem, France and Cotene(TM) 4612, a linear low density polyethylene powder produced by J.R Courtenay (New Zealand). The effects of dipping time, preheat temperature and particle size distribution on coating thickness and surface finish were investigated. Consistent trends in coating thickness growth with dipping time were obtained for both nylon-11 and polyethylene powders with increases in coating thickness with preheat temperature. For the same preheat temperature, the lower melting point of polyethylene results in thicker coatings compared to those of nylon-11. There is a negligible change in the coating thickness for sieved powders compared to that for unsieved powders. A pre-heat temperatures of between 240 degrees C and 300 degrees C is necessary to achieve an acceptable surface finish with both nylon-11 and polyethylene powders. To minimize errors in achieving the desired coating thickness, dipping times shorter than 2 s are not recommended. The use of graphs of coating thickness versus dipping time in combination with the coating surface roughness plots presented in this paper enable the optimal choice of pre-heat temperature and dipping time to achieve acceptable surface finish. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
Curing of diglycidyl ether of bisphenol A/diaminodiphenyl sulfone (DGEBA/DDS) epoxy resin has been effected by heating with radio frequency (RF) radiation at frequencies of 30-99 MHz. The epoxy resins can be cured rapidly at low RF power levels. Comparison of the kinetics of the RF curing with thermal curing while maintaining the same curing temperature revealed no differences. Previous differences in rates of thermal and microwave curing are believed to be due to lack of temperature control during microwave curing. For RF curing,the rate of cure, at constant power level, increases at lower RF frequency, thus emphasizing one of the principal advantages of RF curing over microwave curing. (C) 1999 John Wiley & Sons, Inc.
Resumo:
The conventional convection-dispersion (also called axial dispersion) model is widely used to interrelate hepatic availability (F) and clearance (Cl) with the morphology and physiology of the liver and to predict effects such as changes in liver blood flow on F and Cl. An extended form of the convection-dispersion model has been developed to adequately describe the outflow concentration-time profiles for vascular markers at both short and long times after bolus injections into perfused livers. The model, based on flux concentration and a convolution of catheters and large vessels, assumes that solute elimination in hepatocytes follows either fast distribution into or radial diffusion in hepatocytes. The model includes a secondary vascular compartment, postulated to be interconnecting sinusoids. Analysis of the mean hepatic transit time (MTT) and normalized variance (CV2) of solutes with extraction showed that the discrepancy between the predictions of MTT and CV2 for the extended and conventional models are essentially identical irrespective of the magnitude of rate constants representing permeability, volume, and clearance parameters, providing that there is significant hepatic extraction. In conclusion, the application of a newly developed extended convection-dispersion model has shown that the unweighted conventional convection-dispersion model can be used to describe the disposition of extracted solutes and, in particular, to estimate hepatic availability and clearance in booth experimental and clinical situations.
Resumo:
Fertilisation of eggs of free-spawning marine invertebrates depends on factors affecting sperm concentration in the field and also on gamete characteristics such as egg size. In the free-spawning intertidal ascidian Pyura stolonifera mean egg size increased with maternal size in 2 separate populations. The largest ascidian produced eggs that were, on average, 50% greater in volume than the eggs produced by the smallest individual studied. There was no evidence to suggest that egg density varied with adult size and egg dry organic weight increased with maternal size. The fertilisation kinetics of this species were strongly affected by the variation in egg size, with the eggs of large individuals requiring much less concentrated sperm to achieve maximal levels of fertilisation success than the eggs of small individuals. We suggest that variation in egg size between individuals of different sizes and ages may be an important factor in determining fertilisation success for ascidians of this species.
Resumo:
The tissue distribution kinetics of a highly bound solute, propranolol, was investigated in a heterogeneous organ, the isolated perfused limb, using the impulse-response technique and destructive sampling. The propranolol concentration in muscle, skin, and fat as well as in outflow perfusate was measured up to 30 min after injection. The resulting data were analysed assuming (1) vascular, muscle, skin and fat compartments as well mixed (compartmental model) and (2) using a distributed-in-space model which accounts for the noninstantaneous intravascular mixing and tissue distribution processes but consists only of a vascular and extravascular phase (two-phase model). The compartmental model adequately described propranolol concentration-time data in the three tissue compartments and the outflow concentration-time curve (except of the early mixing phase). In contrast, the two-phase model better described the outflow concentration-time curve but is limited in accounting only for the distribution kinetics in the dominant tissue, the muscle. The two-phase model well described the time course of propranolol concentration in muscle tissue, with parameter estimates similar to those obtained with the compartmental model. The results suggest, first that the uptake kinetics of propranolol into skin and fat cannot be analysed on the basis of outflow data alone and, second that the assumption of well-mixed compartments is a valid approximation from a practical point of view las, e.g., in physiological based pharmacokinetic modelling). The steady-state distribution volumes of skin and fat were only 16 and 4%, respectively, of that of muscle tissue (16.7 ml), with higher partition coefficient in fat (6.36) than in skin (2.64) and muscle (2.79. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The convection-dispersion model and its extended form have been used to describe solute disposition in organs and to predict hepatic availabilities. A range of empirical transit-time density functions has also been used for a similar purpose. The use of the dispersion model with mixed boundary conditions and transit-time density functions has been queried recently by Hisaka and Sugiyanaa in this journal. We suggest that, consistent with soil science and chemical engineering literature, the mixed boundary conditions are appropriate providing concentrations are defined in terms of flux to ensure continuity at the boundaries and mass balance. It is suggested that the use of the inverse Gaussian or other functions as empirical transit-time densities is independent of any boundary condition consideration. The mixed boundary condition solutions of the convection-dispersion model are the easiest to use when linear kinetics applies. In contrast, the closed conditions are easier to apply in a numerical analysis of nonlinear disposition of solutes in organs. We therefore argue that the use of hepatic elimination models should be based on pragmatic considerations, giving emphasis to using the simplest or easiest solution that will give a sufficiently accurate prediction of hepatic pharmacokinetics for a particular application. (C) 2000 Wiley-Liss Inc. and the American Pharmaceutical Association J Pharm Sci 89:1579-1586, 2000.
Resumo:
H-1- and C-13-NMR spectroscopy and FT-Raman spectroscopy are used to investigate the properties of a polymer gel dosimeter post-irradiation. The polymer gel (PACT) is composed of acrylamide, N,N'-methylene-bisacrylamide, gelatin, and water. The formation of a polyacrylamide network within the gelatin matrix follows a dose dependence nonlinearly correlated to the disappearance of the double bonds from the dissolved monomers within the absorbed dose range of 0-50 Gy. The signal from the gelatin remains constant with irradiation. We show that the NMR spin-spin relaxation times (T-2) of PAGs irradiated to up to 50 Gy measured in a NMR spectrometer and a clinical magnetic resonance imaging scanner can be modeled using the spectroscopic intensity of the growing polymer network. More specifically, we show that the nonlinear T-2 dependence against dose can be understood in terms of the fraction of protons in three different proton pools. (C) 2000 John Wiley & Sons, Inc.
Resumo:
The effects of ionizing radiation in different compositions of polymer gel dosimeters are investigated using FT-Raman spectroscopy and NMR T-2 relaxation times. The dosimeters are manufactured from different concentrations of comonomers (acrylamide and N,N'-methylene-bis-acrylamide) dispersed in different concentrations of an aqueous gelatin matrix. Results are analysed using a model of fast exchange of magnetization between three proton pools. The fraction of protons in each pool is determined using the known chemical composition of the dosimeter and FT-Raman spectroscopy. Based on these results, the physical and chemical processes in interplay in the dosimeters are examined in view of their effect on the changes in T-2 The precipitation of growing macroradicals and the scavenging of free radicals by gelatin are used to explain the rate of polymerization. The model describes the changes in T-2 as a function of the absorbed dose up to 50 Gy for the different compositions. This is expected to aid the theoretical design of new, more efficient dosimeters, since it was demonstrated that the optimum dosimeter (i.e, with the lowest dose resolution) must have a range of relaxation times which match the range of T-2 values which can be determined with the lowest uncertainty using an MRI scanner.