139 resultados para Kinetic Characterization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background/Aims: Liver clearance models are based on information (or assumptions) on solute distribution kinetics within the microvasculatory system, The aim was to study albumin distribution kinetics in regenerated livers and in livers of normal adult rats, Methods: A novel mathematical model was used to evaluate the distribution space and the transit time dispersion of albumin in livers following regeneration after a two-thirds hepatectomy compared to livers of normal adult rats. Outflow curves of albumin measured after bolus injection in single-pass perfused rat livers were analyzed by correcting for the influence of catheters and fitting a long-tailed function to the data. Results: The curves were well described by the proposed model. The distribution volume and the transit time dispersion of albumin observed in the partial hepatectomy group were not significantly different from livers of normal adult rats. Conclusions: These findings suggest that the distribution space and the transit time dispersion of albumin (CV2) is relatively constant irrespective of the presence of rapid and extensive repair. This invariance of CV2 implies, as a first approximation, a similar degree of intrasinusoidal mixing, The finding that a sum of two (instead of one) inverse Gaussian densities is an appropriate empirical function to describe the outflow curve of vascular indicators has consequences for an improved prediction of hepatic solute extraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MiAMP1 is a low-molecular-weight, cysteine-rich, antimicrobial peptide isolated from the nut kernel of Macadamia integrifolia. A DNA sequence encoding MiAMP1 with an additional ATG: start codon was cloned into a modified pET vector under the control of the T7 RNA polymerase promoter. The pET vector was cotransformed together with the vector pSB161, which expresses a rare arginine tRNA. The peptide was readily isolated in high yield from the insoluble fraction of the Escherichia coil extract. The purified peptide was shown to have an identical molecular weight to the native peptide by mass spectroscopy indicating that the N-terminal methionine had been cleaved. Analysis by NMR spectroscopy indicated that the refolded recombinant peptide had a similar overall three-dimensional structure to that of the native peptide. The peptide inhibited the growth of phytopathogenic fungi in vitro in a similar manner to the native peptide. To our knowledge, MiAMP1 is the first antimicrobial peptide from plants to be functionally expressed in E. coil. This will permit a detailed structure-function analysis of the peptide and studies of its mode of action on phytopathogens. (C) 1999 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reverse transcription coupled with polymerase chain reaction and restriction enzyme analysis was used to characterize 12 Drosophila C virus isolates from geographically different regions. A 1.2-kb fragment was amplified from cDNA and profiles from digestion with 20 restriction enzymes were generated. Analysis of the restriction fragment data gave estimates of nucleotide divergence of 0-10% between isolates. The isolates were grouped on the basis of genetic distance estimates derived from the restriction data. For the isolates from which a single genotype could be purified, a geographical pattern in the distribution of viral genotypes was identified. The 4 Moroccan isolates were very closely related to each other, differing in only 1 restriction profile. The 2 Australian isolates were each other's closest relatives, as were the 2 isolates first recovered in France. The PCR-RFLP technique used in this study has provided us with a simple procedure which can be used to characterize DCV isolates. A single enzyme, Tag I, generated 5 distinct and diagnostic restriction fragment patterns, which allowed easy assignment of isolates to one of the five viral genotypes identified in this study. (C) 1999 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purification and crystallization of two different crystal forms of the two-domain protein bovine cyclophilin 40 is reported. Tetragonal crystals grown in methyl pentanediol belong to space group P4(2)22 with unit-cell parameters a = 94.5, c = 118.3 Angstrom. Long thin needles grown from PEG belong to space group C2 with unit-cell parameters a = 125.71, b = 47.3, c = 74.6 Angstrom, beta = 93.90 degrees. The N-terminal 170 amino acids have significant homology with the well characterized human cyclophilin A. The C-terminal domain is largely made up of three copies of the tetratricopeptide repeat motif thought to be involved in mediating protein-protein interactions. Cyclophilins are frequently found as domains in larger multidomain proteins. To date, only X-ray structures of single-domain cyclophilins have been reported, and this work provides the first example of the purification and crystallization of a larger protein containing a cyclophilin domain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon dioxide reforming of methane into syngas over Ni/gamma-Al2O3 catalysts was systematically studied. Effects of reaction parameters on catalytic activity and carbon deposition over Ni/gamma-Al2O3 catalysts were investigated. It is found that reduced NiA1204, metal nickel, and active species of carbon deposited were the active sites for this reaction. Carbon deposition on Ni/gamma Al2O3 varied depending on the nickel loading and reaction temperature and is the major cause of catalyst deactivation. Higher nickel loading produced more coke on the catalysts, resulting in rapid deactivation and plugging of the reactor. At 5 wt % Ni/gamma-Al2O3 catalyst exhibited high activity and much lesser magnitude of deactivation in 140 h. Characterization of carbon deposits on the catalyst surface revealed that there are two kinds of carbon species (oxidized and -C-C-) formed during the reaction and they showed different reactivities toward hydrogenation and oxidation. Kinetic studies showed that the activation energy for CO production in this reaction amounted to 80 kJ/mol and the rate of CO production could be described by a Langmuir-Hinshelwood model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sulfonation is an important metabolic process involved in the excretion and in some cases activation of various endogenous compounds and xenobiotics. This reaction is catalyzed by a family of enzymes named sulfotransferases. The cytosolic human sulfotransferases SULT1A1 and SULT1A3 have overlapping yet distinct substrate specificities. SULT1A1 favors simple phenolic substrates such as p-nitrophenol, whereas SULT1A3 prefers monoamine substrates such as dopamine. In this study we have used a variety of phenolic substrates to functionally characterize the role of the amino acid at position 146 in SULT1A1 and SULT1A3. First, the mutation A146E in SULT1A1 yielded a SULT1A3-like protein with respect to the Michaelis constant for simple phenols. The mutation E146A in SULT1A3 resulted in a SULT1A1-like protein with respect to the Michaelis constant for both simple phenols and monoamine compounds. When comparing the specificity of SULT1A3 toward tyramine with that for p-ethylphenol (which differs from tyramine in having no amine group on the carbon side chain), we saw a 200-fold preference for tyramine. The kinetic data obtained with the E146A mutant of SULT1A3 for these two substrates clearly showed that this protein preferred substrates without an amine group attached. Second, changing the glutamic acid at position 146 of SULT1A3 to a glutamine, thereby neutralizing the negative charge at this position, resulted in a 360-fold decrease in the specificity constant for dopamine. The results provide strong evidence that residue 146 is crucial in determining the substrate specificity of both SULT1A1 and SULT1A3 and suggest that there is a direct interaction between glutamic acid 146 in SULT1A3 and monoamine substrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microorganisms that hydrolyse the ester linkages between phenolic acids and polysaccharides in plant cell walls are potential sources of enzymes for the degradation of lignocellulosic waste. An anaerobic, mesophilic, spore-forming, xylanolytic bacterium with high hydroxy cinnamic acid esterase activity was isolated from the gut of the grass-eating termite Tumilitermes pastinator. The bacterium was motile and rod-shaped, stained gram-positive, had an eight-layered cell envelope, and.formed endospores. Phylogenetic analysis based on 16S rRNA indicated that the bacterium is closely related to Clostridium xylanolyticum and is grouped with polysaccharolytic strains of clostridia. A wide range of carbohydrates were fermented, and growth was stimulated by either xylan or cellobiose as substrates. The bacterium hydrolysed and then hydrogenated the hydroxy cinnamic acids (ferulic and p-coumaric acids), which are esterified to arabinoxylan in plant cell walls. Three cytoplasmic enzymes with hydroxy cinnamic acid esterase activity were identified using non-denaturing gel electrophoresis. This bacterium possesses an unusual multilayered cell envelope in which both leaflets of the cytoplasmic membrane, the peptidoglycan layer and the S layer are clearly discernible. The fate of all these components was easily followed throughout the endospore formation process. The peptidoglycan component persisted during the entire morphogenesis. It was seen to enter the septum and to pass with the engulfing membranes to surround the prespore. It eventually expanded to form the cortex, verification for the peptidoglycan origin of the cortex. Sporogenic vesicles, which are derived from the cell wall peptidoglycan, were associated with the engulfment process. Spore coat fragments appeared early, in stage II, though spore coat formation was not complete until after cortex formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bulk free radical copolymerizations of 2-hydroxyethyl methacrylate (HEMA) with n-butyl methacrylate (BMA) or cyclohexyl methacrylate (CHMA) were studied over the composition mole fraction interval of 0-1 for HEMA in the monomer feed. The C-13 NMR (125 MHz) spectra of the copolymers were analysed to determine the copolymer composition and the stereochemical configuration of the copolymers. The terminal model reactivity ratios of HEMA and BMA were found to be r(HEMA) = 1.73 and r(BMA) = 0.65 and for HEMA and CHMA, r(HEMA) = 1.26 and r(CHMA) = 0.31. The BMA and CHMA homopolymers were found to be predominantly syndiotactic with isotacticity parameters of theta(BB) = 0.18 and theta(CC) = 0.19, respectively. The copolymers were also found to be predominantly syndiotactic, indicating a strong tendency for racemic additions of the monomers in the formation of the copolymers. The diffusion of water into cylinders of poly(HEMA-co-BMA) and poly(HEMA-co-CHMA) was studied over a range of copolymer compositions and was found to be Fickian. The diffusion coefficients of water at 37 degrees C were determined from swelling measurements and were found to vary from 1.72 x 10(-11) m(2) s(-1) for polyHEMA to 0.97 x 10(-11) m(2) s(-1) for poly(HEMA-co-BMA) having a mole fraction F-HEMA = 0.80 and to 0.91 x 10(-11) m(2) s(-1) for a poly(HEMA-co-CHMA) also having F-HEMA = 0.80. The mass of water absorbed at equilibrium relative to the mass of dry polymer varied from 58.8 for polyHEMA to 27.2% for poly(HEMA-co-BMA) having F-HEMA = 0.85 and to 21.3% for poly(HEMA-co-CHMA) having F-HEMA = 0.80. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cylindrospermopsis raciborskii is a toxic-bloom-forming cyanobacterium that is commonly found in tropical to subtropical climatic regions worldwide, but it is also recognized as a common component of cyanobacterial communities in temperate climates. Genetic profiles of C. raciborskii were examined in 19 cultured isolates originating from geographically diverse regions of Australia and represented by two distinct morphotypes. A 609-bp region of rpoC1, a DNA-dependent RNA polymerase gene, was amplified by PCR from these isolates with cyanobacterium-specific primers. Sequence analysis revealed that all isolates belonged to the same species, including morphotypes with straight or coiled trichomes. Additional rpoC1 gene sequences obtained for a range of cyanobacteria highlighted clustering of C. raciborskii with other heterocyst-producing cyanobacteria (orders Nostocales and Stigonematales). In contrast, randomly amplified polymorphic DNA and short tandemly repeated repetitive sequence profiles revealed a greater level of genetic heterogeneity among C. raciborskii isolates than did rpoC1 gene analysis, and unique band profiles were also found among each of the cyanobacterial genera examined. A PCR test targeting a region of the rpoC1 gene unique to C. raciborskii was developed for the specific identification of C. raciborskii from both purified genomic DNA and environmental samples. The PCR was evaluated with a number of cyanobacterial isolates, but a PCR-positive result was only achieved with C, raciborskii. This method provides an accurate alternative to traditional morphological identification of C. raciborskii.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 32-residue peptide, RK-1, a novel kidney-derived three disulfide-bonded member of the antimicrobial alpha-defensin family, was synthesized by the continuous now Fmoc-solid phase method. The crude, cleaved and S-reduced Linear peptide was both efficiently folded and oxidized in an acidic solution of aqueous dimethyl sulfoxide. Following purification of the resulting product, it was shown by a variety of analytical techniques, including matrix assisted laser desorption time of flight mass spectrometry, to possess a very high degree of purity. The disulfide bond pairing of the synthetic peptide was determined by H-1-NMR spectroscopy and confirmed to be a Cys(1)-Cys(6), Cys(2)-Cys(4), Cys(3)-Cys(5) arrangement similar to other mammalian alpha-defensin peptides. The synthetic RK-1 was also shown to inhibit the growth of Escherichia coli type strain NCTC 10418, Copyright (C) 2000 European Peptide Society and John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hedamycin, a member of the pluramycin class of antitumour antibiotics, consists of a planar anthrapyrantrione chromophore to which is attached two aminosugar rings at one end and a bisepoxide-containing sidechain at the other end, Binding to double-stranded DNA is known to involve both reversible and non-reversible modes of interaction. As a part of studies directed towards elucidating the structural basis for the observed 5'-pyGT-3' sequence selectivity of hedamycin, we conducted one-dimensional NMR titration experiments at low temperature using the hexadeoxyribonucleotide duplexes d(CACGTG)(2) and d(CGTACG)(2). Spectral changes which occurred during these titrations are consistent with hedamycin initially forming a reversible complex in slow exchange on the NMR timescale and binding through intercalation of the chromophore. Monitoring of this reversible complex over a period of hours revealed a second type of spectral change which corresponds with formation of a non-reversible complex. Copyright (C) 1999 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have isolated a family of insect-selective neurotoxins from the venom of the Australian funnel-web spider that appear to be good candidates for biopesticide engineering. These peptides, which we have named the Janus-faced atracotoxins (J-ACTXs), each contain 36 or 37 residues, with four disulfide bridges, and they show no homology to any sequences in the protein/DNA databases. The three-dimensional structure of one of these toxins reveals an extremely rare vicinal disulfide bridge that we demonstrate to be critical for insecticidal activity. We propose that J-ACTX comprises an ancestral protein fold that we refer to as the disulfide-directed beta-hairpin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kalata B1 is a prototypic member of the unique cyclotide family of macrocyclic polypeptides in which the major structural features are a circular peptide backbone, a triple stranded beta-sheet, and a cystine knot arrangement of three disulfide bonds. The cyclotides are the only naturally occurring family of circular proteins and have prompted us to explore the concept of acyclic permutation, i.e. opening the backbone of a cross-linked circular protein in topologically permuted ways. We have synthesized the complete suite of acyclic permutants of kalata B1 and examined the effect of acyclic permutation on structure and activity. Only two of six topologically distinct backbone loops are critical for folding into the native conformation, and these involve disruption of the embedded ring in the cystine knot. Surprisingly, it is possible to disrupt regions of the p-sheet and still allow folding into native-like structure, provided the cystine knot is intact. Kalata B1 has mild hemolytic activity, but despite the overall structure of the native peptide being retained in all but two cases, none of the acyclic permutants displayed hemolytic activity. This loss of activity is not localized to one particular region and suggests that cyclization is critical for hemolytic activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2-Amino-3-methylimidazo[4,5-f]quinoline (IQ) is one of several mutagenic and carcinogenic heterocyclic amines formed during the cooking process of protein-rich foods, These compounds are highly mutagenic and have been shown to produce tumours in various tissues in rodents and non-human primates. Metabolic activation of IQ is a two-step process involving N-hydroxylation by CYP1A2 followed by esterification to a more reactive species capable of forming adducts with DNA, To date, acetylation and sulphation have been proposed as important pathways in the formation of N-hydroxy esters, In this study we have demonstrated the presence of an ATP-dependent activation pathway for N-hydroxy-IQ (N-OH-IQ) leading to DNA adduct formation measured by covalent binding of [H-3]N-OH-IQ to DNA, ATP-dependent DNA binding of N-OH-IQ was greatest in the cytosolic fraction of rat liver, although significant activity was also seen in colon, pancreas and lung. ATP was able to activate N-OH-IQ almost 10 times faster than N-hydroxy-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (7.7 +/- 0.3 and 0.9 +/- 0.1 pmol/mg protein/min, respectively). Using reported intracellular concentrations of cofactor, the ability of ATP to support DNA binding was similar to that seen with 3'-phosphoadenosine 5'-phosphosulphate and similar to 50% of that seen with acetyl coenzyme A (AcCoA), In addition to DNA binding, HPLC analysis of the reaction mixtures using ATP as co-factor showed the presence of two stable, polar metabolites, With AcCoA, only one metabolite was seen. The kinase inhibitors genistein, tyrphostin A25 and rottlerin significantly inhibited both DNA binding and metabolite formation with ATP. However, inhibition was unlikely to be due to effects on enzyme activity since the broad spectrum kinase inhibitor staurosporine had no effect and the inactive analogue of genistein, daidzein, was as potent as genistein, The effects of genistein and daidzein, which are naturally occurring isoflavones from soy and other food products, on DNA adduct formation may potentially be useful in the prevention of heterocyclic amine-induced carcinogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel conotoxin belonging to the 'four-loop' structural class has been isolated from the venom of the piscivorous cone snail Conus tulipa. It was identified using a chemical-directed strategy based largely on mass spectrometric techniques. The new toxin, conotoxin TVIIA, consists of 30 amino-acid residues and contains three disulfide bonds. The amino-acid sequence was determined by Edman analysis as SCSGRDSRCOOVCCMGLMCSRGKCVSIYGE where O = 4-transl-hydroxyproline. Two under-hydroxylated analogues, [Pro10]TVIIA and [Pro10,11]TVIIA, were also identified in the venom of C. tulipa. The sequences of TVIIA and [Pro10]TVIIA were further verified by chemical synthesis and coelution studies with native material. Conotoxin TVIIA has a six cysteine/four-loop structural framework common to many peptides from Conus venoms including the omega-, delta- and kappa-conotoxins. However, TVIIA displays little sequence homology with these well-characterized pharmacological classes of peptides, but displays striking sequence homology with conotoxin GS, a peptide from Conus geographus that blocks skeletal muscle sodium channels. These new toxins and GS share several biochemical features and represent a distinct subgroup of the four-loop conotoxins.