77 resultados para Kemp, Stan


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most lungfish tooth plates, that are arranged in radiating ridges derived from the fusion of separate cusps in young juveniles, are based on a framework of enamel, mantle dentine and bone that encloses a mass of specialized dentines forming the occlusal surface. In most taxa, the specialized dentines are interdenteonal and circumdenteonal dentine, but a few derived genera have petrodentine as well. Petrodentine, as originally defined, describes a specific form of hypermineralized dentine in adult tooth plates of the Recent African lungfish Protopterus. The ontogeny of fossil and Recent lungfish tooth plates demonstrates that petrodentine is derived by continuous enhancement of the hard tissue of the primary core of the initially isolated cusps of the tooth plate, and that interdenteonal dentine with denteons of circumdenteonal dentine is a secondary development in the tooth plate around and below the first formed cusps of the ridges. In dipnoans that lack petrodentine in adults the primary core of the cusps is not enhanced, but is removed by wear. The hard tissues of the dipnoan tooth plate provide useful characters for defining dipnoan taxa, as do the differing arrangements of the tissues in each species. Details of the arrangement of the enclosed specialized dentines are surprisingly variable among genera, and are significant for the structure and function of the tooth plate. Little regularity of structure is discernible in the histology of tooth plates of early dipnoans, but derived genera have more predictable structure. Consistent with other uniquely dipnoan characters, like the composition of the dermal skull, an evolutionary progression is evident within the group in the fine structure of the dentition, and, as with the bones of the dermal skull, little similarity is demonstrable between the dentines of dipnoans and tetrapods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traumatic injury to the dentition of dipnoans, indirectly as a result of jaw fracture, or directly from damage to the tooth tissues, is present throughout the history of this group, in fossil and in Recent material. Bones heal, but traces of the injury are retained in the tooth tissues, permanently if the proliferative regions of the tooth plate are injured, or until the damaged dentines are removed by wear if the growing regions are left intact. Lack of resorption and repair of damaged dental hard tissues in dipnoans has implications for some models of tooth plate growth in lungfish with a permanent dentition, because this indicates that lungfish tooth plates may not have the capacity to form reparative dentine as part of the normal growth processes.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nine cases of melioidosis with four deaths occurred over a 28-month period in members of a small remote Aboriginal community in the top end of the Northern Territory of Australia. Typing by pulsed-field gel electrophoresis showed isolates of Burkholderia pseudomallei from six of the cases to be clonal and also identical to an isolate from the community water supply, but not to soil isolates. The clonality of the isolates found in this cluster contrasts with the marked genetic diversity of human and environmental isolates found in this region which is hyperendemic for B. pseudomallei. It is possible that the clonal bacteria persisted and were propagated in biofilm in the water supply system. While the exact mode of transmission to humans and the reasons for cessation of the outbreak remain uncertain, contamination of the unchlorinated community water supply is a likely explanation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermally unaltered conodont elements, brachiopods. and vertebrates were analyzed with reverse phase high profile liquid chromatography to locate and quantify amino acid remnants of the original organic matrix in the fossils. No consistent similarities in amino acid content were found in conodont taxa. and criteria based on organic residues appear to have no taxonomic significance in the fossils tested from these localities. However, hydroxyproline. an amino acid that is found in the collagen molecules of animals. as well as in the glycoproteins in the cell walls and reproductive tissues of certain plants, is represented in most taxa. The organic matter retained in the impermeable crowns of conodont elements might have been derived originally from a form of collagen. Biochemical analyses. correlated with histochemical tests, demonstrate that organic matter is an integral part of the hyaline tissue of the element crown and not the result of surface contamination. Tests of a range of vertebrate and invertebrate fossil hard tissues produced similar results. The analyses indicate that hyaline tissue in the conodont element crown is not a form of vertebrate enamel. which contains no collagen. Albid tissue. with little or no organic content. is not a form of vertebrate bone or dentine, both based on collagen and low in mineral. Although these results do not help to determine the phylogenetic affinities of conodont animals, they indicate teat conodont elements do not contain hard tissues characteristic of vertebrate animals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Comparison of the ultrastructure of the hyaline tissue of conodont elements and the enamel of vertebrates provides little support for a close phylogenetic relationship between conodonts and vertebrates. Transmission and scanning electron microscopy shows that the mineralised component of the hyaline tissue of Panderodus and of Cordylodus elements consists of large, flat, oblong crystals, arranged in layers that run parallel to the long axis of the conodont. Enamel in the dentition of a living vertebrate, the lungfish Neoceratodus forsteri, has crystals of calcium hydroxyapatite, arranged in layers, and extending in groups from the dentine-enamel junction; the crystals are slender, elongate spicules perpendicular to the surface of the tooth plate, Similar crystal arrangements to those of lungfish are found in other vertebrates, but none resembles the organisation of the hyaline tissue of conodont elements, The crystals of hydroxyapatite in conodont hyaline tissue are exceptionally large, perpendicular or parallel to the surface of the element, with no trace of prisms, unlike the protoprismatic radial crystallite enamel of fish teeth and scales, or the highly organised prismatic enamel of mammals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dentary, a component of the transient marginal dentition found in the mandible of juveniles of the living Australian lungfish Neoceratodus forsteri, is a tooth plate exactly comparable to the tooth plates with radiating ridges that make up the marginal dentitions of Devonian dipnoans like Andreyevichthys, Orlovichthys and Ichnomylax. In N. forsteri, the dentary consists of two ridges, set almost in line with each other, and growing by the addition of cusps, of increasing sizes, to the extremity of each ridge. It is therefore equivalent to two ridges of a more normal tooth plate with radiating ridges. Despite its appearance, as a long row of sharp cusps ankylosed to a slender bone, and its position, embedded in soft tissue above the anterolabial margin of Meckel's cartilage, it is a tooth plate and is not comparable to the marginal dentitions of other vertebrates. Structure and development of the transient marginal dentition of this lungfish is another indication that dipnoans may not be the sister group of tetrapods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The extant lungfish, including three genera, the Australian, South American and African lungfishes, retain a dentition that appeared first in the Devonian, in some of the oldest members of this group. The dentition consists of permanent tooth plates with persistent cusps that appear early in development of the fish. The cusps, separate early in development, form ridges that are arranged in a radiating pattern, and fusion of the cusps to each other and to the underlying jaw bone produces a tooth plate. The lungfish dentition is based on a template of mantle dentine that surrounds bone trabeculae enclosed in the tooth plate. The mantle layer is covered by enamel. In most derived dipnoans, this framework encloses two further forms of dentine, known as interdenteonal and circumdenteonal dentines. The tooth plates grow in area and in depth without evidence of macroscopic resorption of dentines or of enamel. Increase in size and changes in shape of lungfish tooth plates is actually achieved by a process involving microscopic remodelling of the bone contained within the margin of each tooth plate, and the later addition of new dentines and enamel within and around the bone. This is accomplished without creating weakness in the structural integrity of the tooth plate and bone complex, and proceeds in line with growth and remodelling of the jaw bones attached to the tooth plates.