58 resultados para Ionic radii


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rectangular dropshafts, commonly used in sewers and storm water systems, are characterised by significant flow aeration. New detailed air-water flow measurements were conducted in a near-full-scale dropshaft at large discharges. In the shaft pool and outflow channel, the results demonstrated the complexity of different competitive air entrainment mechanisms. Bubble size measurements showed a broad range of entrained bubble sizes. Analysis of streamwise distributions of bubbles suggested further some clustering process in the bubbly flow although, in the outflow channel, bubble chords were in average smaller than in the shaft pool. A robust hydrophone was tested to measure bubble acoustic spectra and to assess its field application potential. The acoustic results characterised accurately the order of magnitude of entrained bubble sizes, but the transformation from acoustic frequencies to bubble radii did not predict correctly the probability distribution functions of bubble sizes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the first dynamical analysis of a galaxy cluster to include a large fraction of dwarf galaxies. Our sample of 108 Fornax Cluster members measured with the UK Schmidt Telescope FLAIR-II spectrograph contains 55 dwarf galaxies (15.5 > b(j) > 18.0 or -16 > M-B > -13.5). H alpha emission shows that of the dwarfs are star forming, twice the fraction implied by morphological classifications. The total sample has a mean velocity of 1493 +/- 36 kms s(-1) and a velocity dispersion of 374 +/- 26 km s(-1). The dwarf galaxies form a distinct population: their velocity dispersion (429 +/- 41 km s(-1)) is larger than that of the giants () at the 98% confidence level. This suggests that the dwarf population is dominated by infalling objects whereas the giants are virialized. The Fornax system has two components, the main Fornax Cluster centered on NGC 1399 with cz = 1478 km s(-1) and sigma (cz) = 370 km s(-1) and a subcluster centered 3 degrees to the southwest including NGC 1316 with cz = 1583 km s(-1) and sigma (cz) = 377 km s(-1). This partition is preferred over a single cluster at the 99% confidence level. The subcluster, a site of intense star formation, is bound to Fornax and probably infalling toward the cluster core for the first time. We discuss the implications of this substructure for distance estimates of the Fornax Cluster. We determine the cluster mass profile using the method of Diaferio, which does not assume a virialized sample. The mass within a projected radius of 1.4 Mpc is (7 +/- 2) x 10(13) M-., and the mass-to-light ratio is 300 +/- 100 M-./L-.. The mass is consistent with values derived from the projected mass virial estimator and X-ray measurements at smaller radii.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The solubilities and dissolution rates of three gypsum sources (analytical grade (AG), phosphogypsum (PG) and mined gypsum (MG)) with six MG size fractions ((mm) > 2.0, 1.0-2.0, 0.5-1.0, 0.25-0.5, 0.125-0.25, and < 0.125) were investigated in triple deionised water (TDI) and seawater to examine their suitability for bauxite residue amelioration. Gypsum solubility was greater in seawater (3.8 g L 1) than TDI (2.9 g L 1) due to the ionic strength effect, with dissolution in both TDI and seawater following first order kinetics. Dissolution rate constants varied with gypsum source (AR > PG > MG) due to reactivity and surface area differences, with 1:20 gypsum:solution suspensions reaching saturation within 15 s (AR) to 30 min (MG > 2.0). The ability of bauxite residue to adsorb Ca from solution was also examined. The quantity of the total solution Ca adsorbed was found to be small (5 %). These low rates of solution Ca adsorption combined with the comparatively rapid dissolution rates preclude the application of gypsum to the residue sand/seawater slurry as a method for residue amelioration. Instead, direct field application to the residue would ensure more efficient gypsum use. In addition, the formation of a sparingly soluble CaCO3 coating around the gypsum particles after mixing in a highly alkaline seawater/supernatant liquor (SNL) solution greatly reduced the rate of gypsum dissolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the increasing prevalence of salinity world-wide, the measurement of exchangeable cation concentrations in saline soils remains problematic. Two soil types (Mollisol and Vertisol) were equilibrated with a range of sodium adsorption ratio (SAR) solutions at various ionic strengths. The concentrations of exchangeable cations were then determined using several different types of methods, and the measured exchangeable cation concentrations compared to reference values. At low ionic strength (low salinity), the concentration of exchangeable cations can be accurately estimated from the total soil extractable cations. In saline soils, however, the presence of soluble salts in the soil solution precludes the use of this method. Leaching of the soil with a pre-wash solution (such as alcohol) was found to effectively remove the soluble salts from the soil, thus allowing the accurate measurement of the effective cation exchange capacity (ECEC). However, the dilution associated with this pre-washing increased the exchangeable Ca concentrations while simultaneously decreasing exchangeable Na. In contrast, when calculated as the difference between the total extractable cations and the soil solution cations, good correlations were found between the calculated exchangeable cation concentrations and the reference values for both Na (Mollisol: y=0.873x and Vertisol: y=0.960x) and Ca (Mollisol: y=0.901x and Vertisol: y=1.05x). Therefore, for soils with a soil solution ionic strength greater than 50 mM (electrical conductivity of 4 dS/m) (in which exchangeable cation concentrations are overestimated by the assumption they can be estimated as the total extractable cations), concentrations can be calculated as the difference between total extractable cations and soluble cations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kidney function and the role of the cloacal complex in osmoregulation was investigated in estuarine crocodile (Crocodylus porosus) exposed to three environmental salinities: hypo-, iso- and hyperosmotic to the plasma. Plasma homeostasis was maintained over the range of salinities. Antidiuresis occurred with increased salinity. Although urine from the kidneys retained an osmotic pressure between 77% and 82% of the plasma, over 93% and 98% of plasma chloride filtered at the glomeruli was reabsorbed during passage through the kidneys under hypo and hyperosmotic conditions, respectively, and only 64% in iso-osmotic water. The kidneys were the primary site of sodium reabsorption under hypo-and hyperosmotic conditions. Secondary processing of urine during storage in the cloaca varied with salinity. During post renal storage of urine, the difference in urine osmotic pressure increased from -26.1 +/- 15.5 to 35.66 +/- 9.29 mOsM with increased salinity, and potassium concentration of urine increased over 3-fold in C. porosus from freshwater. The almost complete reabsorption of both sodium and chloride under hyperosmotic conditions indicates the necessity for secretory activity by the lingual salt glands. The osmoregulatory response of the kidneys and cloacal complex to environmental salinity is both plastic and complementary. (C) 1998 Elsevier Science Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the quantum field theory of two bosonic fields interacting via both parametric (cubic) and quartic couplings. In the case of photonic fields in a nonlinear optical medium, this corresponds to the process of second-harmonic generation (via chi((2)) nonlinearity) modified by the chi((3)) nonlinearity. The quantum solitons or energy eigenstates (bound-state solutions) are obtained exactly in the simplest case of two-particle binding, in one, two, and three space dimensions. We also investigate three-particle binding in one space dimension. The results indicate that the exact quantum solitons of this field theory have a singular, pointlike structure in two and three dimensions-even though the corresponding classical theory is nonsingular. To estimate the physically accessible radii and binding energies of the bound states, we impose a momentum cutoff on the nonlinear couplings. In the case of nonlinear optical interactions, the resulting radii and binding energies of these photonic particlelike excitations in highly nonlinear parametric media appear to be close to physically observable values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the parametric quantum field theory involving cubic and quartic couplings of two bosonic fields. This is exactly soluble for the two-particle energy eigenstates (or quantum solitons) in one, two, and three space dimensions. We estimate the binding energies and corresponding radii in the case of photonic fields in nonlinear optical materials, and Bose-Einstein condensates. [S1050-2947(98)51110-9].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Techniques and mechanism of doping controlled amounts of various cations into pillared clays without causing precipitation or damages to the pillared layered structures are reviewed and discussed. Transition metals of great interest in catalysis can be doped in the micropores of pillared clay in ionic forms by a two-step process. The micropore structures and surface nature of pillared clays are altered by the introduced cations, and this results in a significant improvement in adsorption properties of the clays. Adsorption of water, air components and organic vapors on cation-doped pillared clays were studied. The effects of the amount and species of cations on the pore structure and adsorption behavior are discussed. It is demonstrated that the presence of doped Ca2+ ions can effectively aides the control of modification of the pillared clays of large pore openings. Controlled cation doping is a simple and powerful tool for improving the adsorption properties of pillared clay.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hedley er al. (1982) developed what has become the most widely used land modified), phosphorus (P) fractionation technique. It consists of sequential extraction of increasingly less phytoavailable P pools. Extracts are centrifuged at up to 25000 g (RCF) and filtered to 0.45 mu m to ensure that soil is not lost between extractions. In attempting to transfer this method to laboratories with limited facilities, it was considered that access to high-speed centrifuges, and the cost of frequent filtration may prevent adoption of this P fractionation technique. The modified method presented here was developed to simplify methodology, reduce cost, and therefore increase accessibility of P fractionation technology. It provides quantitative recovery of soil between extractions, using low speed centrifugation without filtration. This is achieved by increasing the ionic strength of dilute extracts, through the addition of NaCl, to flocculate clay particles. Addition of NaCl does not change the amount of P extracted. Flocculation with low speed centrifugation produced extracts comparable with those having undergone filtration (0.025 mu m). A malachite green colorimetric method was adopted for inorganic P determination, as this simple manual method provides high sensitivity with negligible interference from other anions. This approach can also be used for total P following digestion, alternatively non-discriminatory methods, such as inductively coupled plasma atomic emission spectroscopy, may be employed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we characterize the electrophysiological and morphological properties of spiny principal neurons in the rat lateral amygdala using whole cell recordings in acute brain slices. These neurons exhibited a range of firing properties in response to prolonged current injection. Responses varied from cells that showed full spike frequency adaptation, spiking three to five times, to those that showed no adaptation. The differences in firing patterns were largely explained by the amplitude of the afterhyperpolarization (AHP) that followed spike trains. Cells that showed full spike frequency adaptation had large amplitude slow AHPs, whereas cells that discharged tonically had slow AHPs of much smaller amplitude. During spike trains, all cells showed a similar broadening of their action potentials. Biocytin-filled neurons showed a range of pyramidal-like morphologies, differed in dendritic complexity, had spiny dendrites, and differed in the degree to which they clearly exhibited apical versus basal dendrites. Quantitative analysis revealed no association between cell morphology and firing properties. We conclude that the discharge properties of neurons in the lateral nucleus, in response to somatic current injections, are determined by the differential distribution of ionic conductances rather than through mechanisms that rely on cell morphology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A knowledge of the physicochemical properties of inclusion bodies is important for the rational design of potential recovery processes such as flotation and precipitation. In this study, measurement of the size and electrophoretic mobility of protein inclusion bodies and cell debris was undertaken. SDS-PAGE analysis of protein inclusion bodies subjected to different cleaning regimes suggested that electrophoretic mobility provides a qualitative measure of protein inclusion body purity. Electrophoretic mobility as a function of electrolyte type and ionic strength was investigated. The presence of divalent ions produced a stronger effect on electrophoretic mobility compared with monovalent ions. The isoelectric point of cell debris was significantly lower than that for the inclusion bodies. Hence, the contaminating cell debris may be separated from inclusion bodies using flotation by exploiting this difference in isoelectric points. Separation by this method is simple, convenient, and a possible alternative to the conventional route of centrifugation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interaction forces between protein inclusion bodies and an air bubble have been quantified using an atomic force microscope (AFM). The inclusion bodies were attached to the AFM tip by covalent bonds. Interaction forces measured in various buffer concentrations varied from 9.7 nN to 25.3 nN (+/- 4-11%) depending on pH. Hydrophobic forces provide a stronger contribution to overall interaction force than electrostatic double layer forces. It also appears that the ionic strength affects the interaction force in a complex way that cannot be directly predicted by DLVO theory. The effects of pH are significantly stronger for the inclusion body compared to the air bubble. This study provides fundamental information that will subsequently facilitate the rational design of flotation recovery system for inclusion bodies. It has also demonstrated the potential of AFM to facilitate the design of such processes from a practical viewpoint.