57 resultados para Intracellular Ca2 store
Resumo:
Neurodegenerative diseases such as Huntington's disease, ischemia, and Alzheimer's disease (AD) are major causes of death. Recently, metabotropic glutamate receptors (mGluRs), a group of seven-transmembrane-domain proteins that couple to G-proteins, have become of interest for studies of pathogenesis. Group I mGluRs control the levels of second messengers such as inositol 1,4,5-triphosphate (IP3) Cal(2+) ions and cAMP. They elicit the release of arachidonic acid via intracellular Ca2+ mobilization from intracellular stores such as mitochondria and endoplasmic reticulum. This facilitates the release of glutamate and could trigger the formation of neurofibrillary tangles, a pathological hallmark of AD. mGluRs regulate neuronal injury and survival, possibly through a series of downstream protein kinase and cysteine protease signaling pathways that affect mitochondrially mediated programmed cell death. They may also play a role in glutamate-induced neuronal death by facilitating Cal(2+) mobilization. Hence, mGluRs have become a target for neuroprotective drug development. They represent a pharmacological path to a relatively subtle amelioration of neurotoxicity because they serve a modulatory rather than a direct role in excitatory glutamatergic transmission.
Resumo:
Pseudomonas aeruginosa causes severe life-threatening airway infections that are a frequent cause for hospitalization of cystic fibrosis (CF) patients. These Gram-negative pathogens possess flagella that contain the protein flagellin as a major structural component. Flagellin binds to the host cell glycolipid asialoGM1 (ASGM1), which appears enriched in luminal membranes of respiratory epithelial cells. We demonstrate that in mouse airways, luminal exposure to flagellin leads to inhibition of Na+ absorption by the epithelial Na+ channel ENaC, but does not directly induce a secretory response. Inhibition of ENaC was observed in tracheas of wild-type mice and was attenuated in mice homozygous for the frequent cystic fibrosis conductance regulator (CFTR) mutation G551D. Similar to flagellin, anti-ASGM1 antibody also inhibited ENaC. The inhibitory effects of flagellin on ENaC were attenuated by blockers of the purinergic signaling pathway, although an increase in the intracellular Ca2+ concentration by recombinant or purified flagellin or whole flagella was not observed. Because an inhibitor of the mitogen-activated protein kinase (MAPK) pathway also attenuated the effects of flagellin on Na+ absorption, we conclude that flagellin exclusively inhibits ENaC, probably due to release of ATP and activation of purinergic receptors of the P2Y subtype. Stimulation of these receptors activates the MAPK pathway, thereby leading to inhibition of ENaC. Thus, P. aeruginosa reduces Na+ absorption, which could enhance local mucociliary clearance, a mechanism that seem to be attenuated in CF.
Resumo:
The mechanisms underlying the swelling of frog red blood cells (RBC), induced by Pacific (P-CTX-1) and Caribbean (C-CTX-1) ciguatoxins (CTXs), were investigated by measuring the length, width and surface of their elliptic shape. P-CTX-1 (0.5 to 5 nM) and C-CTX-1 (1 mu M) induced RBC swelling within 60 min. The CTXs-induced RBC swelling was blocked by apamin (1 mu M) and by Sr2+ (1 mu M). P-CTX-1-induced RBC swelling was prevented and inhibited by H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one(27 mu M), an inhibitor Of Soluble guanylate cyclase (sGC), and NOS blockade by NG methyl-L-arginine (L-NMA; 10 mu M). Cytochalasin D (cytD, 10 mu M) increased RBC surface and mimicked CTX effect but did not prevent the P-CTX-1-induced L-NMA-sensitive extra increase. Calculations revealed that P-CTX-1 and cytD increase RBC total surface envelop and volume. These data strongly suggest that the molecular mechanisms underlying CTXs-induced RBC swelling involve the NO pathway by an activation of the inducible NOS, leading to sGC activation which modulates intracellular cGMP and regulates L-type Ca2+ channels. The resulting increase in intracellular Ca2+ content, in turn, disrupts the actin cytoskeleton, which causes a water influx and triggers a Ca2+-activated K+ current through SK2 isoform channels. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The role of Ca2+ in the regulation of the cell cycle has been investigated mostly in studies assessing global cytosolic free Ca2+. Recent studies, however, have used unique techniques to assess Ca2+ in subcellular organelles, such as mitochondria, and in discrete regions of the cytoplasm. These studies have used advanced fluorescence digital imaging techniques and Ca2+-sensitive fluorescence probes, and/or targeting of Ca2+-sensitive proteins to intracellular organelles. The present review describes the results of some of these studies and the techniques used. The novel techniques used to measure Ca2+ in microdomains and intracellular organelles are likely to be of great use in future investigations assessing Ca2+ homeostasis during the cell cycle.
Resumo:
Examination of store-operated Ca2+ entry (SOC) in single, mechanically skinned skeletal muscle cells by confocal microscopy shows that the inositol 1,4,5-trisphosphate (IP3) receptor acts as a sarcoplasmic reticulum [Ca2+] sensor and mediates SOC by physical coupling without playing a key role in Ca2+ release from internal stores, as is the case with various cell types in which SOC was investigated previously. The results have broad implications for understanding the mechanism of SOC that is essential for cell function in general and muscle function in particular. Moreover, the study ascribes an important role to the IN receptors in skeletal muscle, the role of which with respect to Ca2+ homeostasis was ill defined until now.
Resumo:
Numerous studies investigating the possible role of altered Ca2+ homeostasis in hypertension have compared resting and agonist-stimulated intracellular free Ca2+ ([Ca2+](i)) in cultured aortic smooth muscle cells from spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats. However, such studies have not given consistent results. Differences in the method used to load cells with the Ca2+-sensitive indicator fura-2 have been investigated here as a possible source of variability between studies. We also describe the adaptation of a fluorescence technique for the assessment of basal Ca2+ permeability in SHR and WKY through the measurement of Mn2+ influx. The results are consistent with the hypothesis that basal Ca2+ influx is elevated in cultured aortic smooth muscle cells from SHR compared to those from WKY. However, this was not reflected as a significant difference between the two strains in basal or angiotensin II (200 nmol/L)stimulated [Ca2+](i). Furthermore, this result was not dependent on the protocol used to load cells with fura-2. Hence, measurement of bulk [Ca2+](i) does not appear to be the most sensitive parameter for altered Ca2+ homeostasis in SHR. Other compartments of the cell may better reflect altered Ca2+ fluxes in hypertension and are discussed in this work.
Resumo:
K+ Channels and Membrane Potential in Endothelial Cells. The endothelium plays a vital role in the control of vascular functions, including modulation of tone; permeability and barrier properties; platelet adhesion and aggregation; and secretion of paracrine factors. Critical signaling events in many of these functions involve an increase in intracellular free Ca2+ concentration ([Ca2+](i)). This rise in [Ca2+](i) occurs via an interplay between several mechanisms, including release from intracellular stores, entry from the extracellular space through store depletion and second messenger-mediated processes, and the establishment of a favorable electrochemical gradient. The focus of this review centers on the role of potassium channels and membrane potential in the creation of a favorable electrochemical gradient for Ca2+ entry. In addition, evidence is examined for the existence of various classes of potassium channels and the possible influence of regional variation in expression and experimental conditions.
Resumo:
The identity of the potassium channel underlying the slow, apamin-insensitive component of the afterhyperpolarization current (sl(AHP)) remains unknown. We studied sl(AHP) in CA1 pyramidal neurons using simultaneous whole-cell recording, calcium fluorescence imaging, and flash photolysis of caged compounds. Intracellular calcium concentration ([Ca2+](i)) peaked earlier and decayed more rapidly than sl(AHP). Loading cells with low concentrations of the calcium chelator EGTA slowed the activation and decay of sl(AHP). In the presence of EGTA, intracellular calcium decayed with two time constants. When [Ca2+](i) was increased rapidly after photolysis of DM-Nitrophen, both apamin-sensitive and apamin-insensitive outward currents were activated. The apamin-sensitive current activated rapidly (<20 msec), whereas the apamin-insensitive current activated more slowly (180 msec). The apamin-insensitive current was reduced by application of serotonin and carbachol, confirming that it was caused by sl(AHP) channels. When [Ca2+](i) was decreased rapidly via photolysis of diazo-2, the decay of sl(AHP) was similar to control (1.7 sec). All results could be reproduced by a model potassium channel gated by calcium, suggesting that the channels underlying sl(AHP) have intrinsically slow kinetics because of their high affinity for calcium.
Resumo:
In many cell types rises in cytosolic calcium, either due to influx from the extracellular space, or by release from an intracellular store activates calcium dependent potassium currents on the plasmalemma. In neurons, these currents are largely activated following calcium influx via voltage gated calcium channels active during the action potentials. Three types of these currents are known: I-c. I-AHP and I-sAHP. These currents can be distinguished by clear differences in their pharmacology and kinetics. Activation of these potassium currents modulates action potential time course and the repetitive firing properties of neurons. Single channel studies have identified two types of calcium-activated potassium channel which can also be separated on biophysical and pharmacological grounds and have been named BK and SK channels. It is now clear that BK channels underlie Ic whereas SK channels underlie I-AHP. The identity of the channels underlying I-sAHP are not known. In this review, we discuss the properties of the different types of calcium-activated potassium channels and the relationship between these channels and the macroscopic currents present in neurons. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
We have observed previously that Ca2+ pump-mediated Ca2+ efflux is elevated in cultured aortic smooth muscle cells from spontaneously hypertensive rats compared to those from Wistar-Kyoto rat controls. The objective of this work was to determine if these strains differ in mRNA levels for the PMCA1 isoform of the plasma membrane Ca2+-ATPase and the SERCA2 isoform of the sarcoplasmic reticulum Ca2+-ATPase. mRNA levels were compared in cultured aortic smooth muscle cells from 10-week-old male rats. PMCA1 and SERCA2 mRNA levels were elevated in SHR compared to WKY. Angiotensin II increased the level of PMCA1 and SERCA2 mRNA in both strains. These studies provide further evidence for alterered Ca2+ homeostasis in hypertension at the level of Ca2+ transporting ATPases in the spontaneously hypertensive rat model. These data are also consistent with the hypothesis that the expression of these two Ca2+ pumps may be linked. (C) 1997 Academic Press
Resumo:
1. Intracellular recordings were made from neurones in the rat otic ganglion in vitro in order to investigate their morphological, physiological and synaptic properties. We took advantage of the simple structure of these cells to test for a possible role of calcium influx via nicotinic acetylcholine receptors during synaptic transmission. 2. Cells filled with biocytin comprised a homogeneous population with ovoid somata and sparse dendritic trees. Neurones had resting membrane potentials of -53 +/- 0.7 mV (n = 69), input resistances of 112 + 7 M Omega, and membrane time constants of 14 +/- 0.9 ms (n = 60). Upon depolarization, all cells fired overshooting action potentials which mere followed by an apamin-sensitive after-hyperpolarization (AHP). In response to a prolonged current injection, all neurones fired tonically. 3. The repolarization phase of action potentials had a calcium component which was mediated by N-type calcium channels. Application of omega-conotoxin abolished both the repolarizing hump and the after-hgrperpolarization suggesting that calcium influx via N-type channels activates SK-type calcium-activated potassium channels which underlie the AHP. 4. The majority (70%) of neurones received innervation from a single preganglionic fibre which generated a suprathreshold excitatory postsynaptic potential mediated by nicotinic acetylcholine receptors. The other 30% of neurones also had one or more subthreshold nicotinic inputs. 5. Calcium influx via synaptic nicotinic receptors contributed to the AHP current, indicating that this calcium has access to the calcium-activated potassium channels and therefore plays a role in regulating cell excitability.
Resumo:
The genome sequence of the Wolbachia endosymbiont that infects the nematode Brugia malayi has recently been determined together with three partial Wolbachia genomes from different Drosophila species. These data along with the previously published Wolbachia genome from Drosophila melanogaster provide new insights into how this endosymbiont has managed to become so successful.
Resumo:
Wolbachia pipientis is a vertically transmitted, obligate intracellular symbiont of arthropods. The bacterium is best known for its ability to manipulate host reproductive biology where it can induce cytoplasmic incompatibility, parthenogenesis, feminization and male-killing. In addition to the various reproductive phenotypes it generates through interaction with host reproductive tissue it is also known to infect somatic tissues. However, relatively little is known about the consequences of infection of these tissues with the exception that in some hosts Wolbachia acts as a classical mutualist and in others a pathogen, dramatically shortening adult insect lifespan. Manipulation experiments have demonstrated that the severity of Wolbachia-induced effects on the host is determined by a combination of host genotype, Wolbachia strain, host tissue localization, and interaction with the environment. The recent completion of the whole genome sequence of Wolbachia pipientis wMel strain indicates that it is likely to use a type IV secretion system to establish and maintain infection in its host. Moreover, an unusual abundance of genes encoding proteins with eukaryotic-like ankyrin repeat domains suggest a function in the various described phenotypic effects in hosts.