25 resultados para Intermediate energies


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A straightforward derivation of relativistic expressions for the mechanical momentum, kinetic and total energies, and mass-energy equivalence (including potential energy) which does not require any knowledge of the energy-momentum relation for electromagnetic waves or consideration of elastic collisions, but is directly based on Newton's second law and Lorentz's transformations, is presented in this paper. The existence of an invariant force is shown to be important for the validity of the relativistic mechanics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to elucidate the oxidative folding mechanism of the macrocyclic cystine knot protein MCoTI-II. We aimed to investigate how the six-cysteine residues distributed on the circular backbone of the reduced unfolded peptide recognize their correct partner and join up to form a complex cystine-knotted topology. To answer this question, we studied the oxidative folding of the naturally occurring peptide using a range of spectroscopic methods. For both oxidative folding and reductive unfolding, the same disulfide intermediate species was prevalent and was characterized to be a native-like two-disulfide intermediate in which the Cys(1)-Cys(18) disulfide bond was absent. Overall, the folding pathway of this head-to-tail cyclized protein was found to be similar to that of linear cystine knot proteins from the squash family of trypsin inhibitors. However, the pathway differs in an important way from that of the cyclotide kalata B1, in that the equivalent two-disulfide intermediate in that case is not a direct precursor of the native protein. The size of the embedded ring within the cystine knot motif appears to play a crucial role in the folding pathway. Larger rings contribute to the independence of disulfides and favor an on-pathway native-like intermediate that has a smaller energy barrier to cross to form the native fold. The fact that macrocyclic proteins are readily able to fold to a complex knotted structure in vitro in the absence of chaperones makes them suitable as protein engineering scaffolds that have remarkable stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spectroscopic studies of pheomelanin and its constituents have been sparse. These data present what is by far the most complete description of the fluorescence characteristics of synthetic pheomelanin. Emission spectra between 260 and 600 nm were acquired,for excitation wavelengths between 250 and 500 nm at 1-nm intervals. A quantum yield map is also presented, correcting the fluorescence intensities for differences in species concentration and molar absorptivity. These fluorescence features exhibit interesting similarities and differences to eumelanin, and these data are interpreted with respect to possible chemical structures. Overall, these data suggest that pheomelanin oligomers may be more tightly coupled than those of eumelanin. Finally, the quantum yield is shown to be on the order of 10(-4) and exhibit a complex dependence on excitation energy, varying by a factor of 4 across the energies employed here. (c) 2006 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate strain energies due to nonplanar distortion of 114 isolated pentagon rule (IPR) fullerenes with 60-102 carbon atoms have been calculated based on B3LYP/6-31G(d) optimized structures. The calculated values of strain energy due to nonplanar distortion (E-np) are reproduced by three simple schemes based upon counts of 8, 16, and 30 distinct structural motifs composed of hexagons and pentagons. Using C-180 (I-h) and CN (I-h) (N is very large) as test molecules, the intrinsic limitations of the motif model based on six-membered rings (6-MRs) as the central unit have been discussed. On the basis of the relationship between the contributions of motifs to E-np and the number of five-membered rings (5-MRs) in motifs, we found that IPR fullerenes with dispersed 5-MRs present smaller nonplanar distortions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper explores the motivational aspects of repertoire for intermediate student cellists. Research into interest and intrinsic motivation related to the learning of instrumental music has been limited to date. As a cello teacher interested in including contemporary and Australian music in my students' studies I started to research availability of Australian repertoire for intermediate cellists and found that there was limited accessibility to such pedagogical material at this level. This study emerged as a way of providing useful information to composers. It investigates intrinsic motivation by questioning students and their teachers about which aspects of music repertoire are most likely to inspire students to practice more and strive for excellence. This paper presents the findings of the purpose-designed questionnaire distributed to cello teachers in Queensland. A similar set of questions has been prepared for student cellists and information gathering from students is still underway. Musical aspects investigated include technique and its development, style, harmony, tempo (speed), and rhythm. The questionnaire gathered information on the most frequently used teaching repertoire and teachers' experiences in teaching contemporary and Australian repertoire. This information was balanced with questions regarding the technical developmental requirements perceived necessary for intermediate students as well as other motivational aspects. It is hoped that information collated from this research will be of benefit in the selection of motivational repertoire for intermediate student cellists and especially in promoting the composition of Australian pieces for intermediate cellists.