126 resultados para Interferon-gamma -- immunology
Resumo:
Immune surveillance by cytotoxic lymphocytes against cancer has been postulated for decades, but direct evidence for the role of cytotoxic lymphocytes in protecting against spontaneous malignancy has been lacking. As the rejection of many experimental cancers by cytotoxic T lymphocytes and natural killer cells is dependent on the pore-forming protein perforin (pfp), we examined pfp-deficient mice for increased cancer susceptibility. Here we show that pfp-deficient mice have a high incidence of malignancy in distinct lymphoid cell lineages (T, B, NKT), indicating a specific requirement for pfp in protection against lymphomagenesis. The susceptibility to lymphoma was accentuated by simultaneous lack of expression of the p53 gene, mutations in which also commonly predispose to human malignancies, including lymphoma. In contrast, the incidence and age of onset of sarcoma was unaffected in p53-deficient mice. Pfp-deficient mice were at least 1,000-fold more susceptible to these lymphomas when transplanted, compared with immunocompetent mice in which tumor rejection was controlled by CD8(+) T lymphocytes. This study is the first that implicates direct cytotoxicity by lymphocytes in regulating lymphomagenesis.
Resumo:
IL-12 has been demonstrated to have potent anti-tumor activities in a variety of mouse tumor models, but the relative roles of NK, NKT, and T cells and their effector mechanisms in these responses have not been fully addressed. Using a spectrum of gene-targeted or Ab-treated mice we have shown that for any particular tumor model the effector mechanisms downstream of IL-12 often mimic the natural immune response to that tumor. For example, metastasis of the MHC class I-deficient lymphoma, EL4-S3, was strictly controlled by NK cells using perforin either naturally or following therapy with high-dose IL-12. Intriguingly, in B16F10 and RM-1 tumor models both NK and NKT cells contribute to natural protection from tumor metastasis, In these models, a lower dose of IL-12 or delayed administration of IL-12 dictated a greater relative role of NKT cells in immune protection from tumor metastasis. Overall, both NK and NKT cells can contribute to natural and IL-12-induced immunity against tumors, and the relative role of each population is turner and therapy dependent.
Resumo:
Controversy still exists regarding the biological function of granzyme serine proteases released with perforin from the cytotoxic granules of NK cells and CTLs. In particular, it is not clear whether the major granzymes, A and A play an essential role in tumor rejection mediated by the perforin pathway. We have now examined the relative importance of perforin and granzyme A and B clusters in five different tumor models that stringently distinguish their importance. We conclude that granzyme A and B clusters are not essential for CTL- and NK cell-mediated rejection of spontaneous and experimental tumors, raising the likelihood that either perforin alone or in combination with an additional granzyme or granule component(s) mediates cytotoxicity of tumor cells in vivo.
Resumo:
An immunoperoxidase technique was used to examine IP-10 (interferon-gamma inducible protein 10), RANTES (regulated on activation normal T cell expressed and secreted), MCP-1 (monocyte chemoattractant protein-1), and MIP-1alpha (macrophage inflammatory protein-1alpha) in gingival biopsies from 21 healthy/gingivitis and 26 periodontitis subjects. The samples were placed into 3 groups according to the size of infiltrate. MIP-1alpha+ cells were more abundant than the other chemokines with few MCP-1+ cells. The mean percent MIP-1alpha+ cells was higher than the percent MCP-1+ cells (P = 0.02) in group 2 (intermediate size infiltrates) lesions from periodontitis subjects, other differences not being significant due to the large variations between tissue samples. Analysis of positive cells in relation to CD4/CD8 ratios showed that with an increased proportion of CD8+ cells, the mean percent MIP-1alpha+ cells was significantly higher in comparison with the mean percent RANTES+ and MCP-1+ cells (P < 0.015). Endothelial cells were MCP-1+ although positive capillaries were found on the periphery of infiltrates only. Keratinocyte expression of chemokines was weak and while the numbers of healthy/gingivitis and periodontitis tissue sections positive for IP-10, RANTES and MCP-1 reduced with increasing inflammation, those positive for MIP-1alpha remained constant for all groups. In conclusion, fewer leucocytes expressed MCP-1 in gingival tissue sections, however, the percent MIP-1alpha+ cells was increased particularly in tissues with increased proportions of CD8 cells and B cells with increasing inflammation and also in tissues with higher numbers of macrophages with little inflammation. Further studies are required to determine the significance of MIP-1alpha in periodontal disease.
Resumo:
The aim of this experiment was to establish a mouse model of irradiation-induced oral candidiasis and to explore the cellular populations and mechanisms by which the infection is cleared from the oral mucosa. BALB/c mice received irradiation to the head and neck equivalent to 800 Rad using a Cobalt 60 gamma source. Both irradiated and non-irradiated mice were infected orally with 1 X 10(8) Candida albicans yeasts. Compared with untreated controls, irradiated animals developed a more severe infection of longer duration, with hyphae penetrating the oral mucosa. Monoclonal antibody depletion of CD4(+) but not CD8(+) T cells from the systemic circulation prolonged the infection in irradiated mice, but not in controls. Supernatants of submandibular and superficial cervical lymph node cultures from irradiated animals demonstrated significantly higher titers of interleukin-12, but similar levels of interferon-gamma compared with controls. Screening for cytokine production by an RNase protection assay detected only macrophage migration inhibition factor in irradiated and non-irradiated oral tissues from day 8 onwards. The results of this study demonstrate a requirement for CD4(+) T cells in the recovery from oral candidiasis induced by head and neck irradiation in mice, and are consistent with a role for Th-1-type cytokines in host resistance.
Resumo:
A marine model of oral candidiasis was used to show that nitric oxide (NO) is involved in host resistance to infection with Candida albicans in infection-'resistant' BALB/c and infection-'prone' DBA/2 mice. Following infection, increased NO production was detected in saliva. Postinfection samples of saliva inhibited the growth of yeast in vitro. Treatment with N-G-monomethyl-L-arginine (MMLA), an inhibitor of NO synthesis, led to reduced NO production, which correlated with an increase in C. albicans growth. Reduction in NO production following MMLA treatment correlated with an abrogation of interleukin-4 (IL-4), but not interferon-gamma (IFN-gamma), mRNA gene expression in regional lymph node cells. Down-regulation of IL-4 production was accompanied with an increase in IFN-gamma production in infection-'prone' DBA/2 mice. There was a functional relationship between IL-4 and NO production in that mice treated with anti-IL-4 monoclonal antibody showed a marked inhibition of NO production in saliva and in culture of cervical lymph node cells stimulated with C albicans antigen. The results Support previous conclusions that IL-4 is associated with resistance to oral candidiasis and suggest that NO is involved in controlling colonization of the oral mucosal surface with C albicans.
Resumo:
Immunity induced by the 19-kDa fragment of merozoite surface protein 1 is dependent on CD4(+) Th cells. However, we found that adoptively transferred CFSE-labeled Th cells specific for an epitope on Plasmodium yoelii 19-kDa fragment of merozoite surface protein 1 (peptide (p)24), but not OVA-specific T cells, were deleted as a result of P. yoelii infection. As a result of infection, spleen cells recovered from infected p24-specific T cell-transfused mice demonstrated reduced response to specific Ag. A higher percentage of CFSE-labeled p24-specific T cells stained positive with annexin and anti-active caspase-3 in infected compared with uninfected mice, suggesting that apoptosis contributed to deletion of p24-specific T cells during infection. Apoptosis correlated with increased percentages of p24-specific T cells that stained positive for Fas from infected mice, suggesting that P. yoelii-induced apoptosis is, at least in part, mediated by Fas. However, bystander cells of other specificities also showed increased Fas expression during infection, suggesting that Fas expression alone is not sufficient for apoptosis. These data have implications for the development of immunity in the face of endemic parasite exposure.
Resumo:
Problem: The present study was performed to explore the effects of pregnancy on experimental autoimmune encephalomyelitis (EAE) induced in Lewis rats by inoculation with myelin basic protein (MBP) (MBP-EAE). Method of study: MBP-EAE was induced in pregnant and non-pregnant rats and severity of disease evaluated. Serum from pregnant and non-pregnant rats was used in standard lymphocyte proliferation assays. Real-time polymerase chain reaction (PCR) was used to investigate the expression of cytokine mRNA in the inflammatory cells obtained from the spinal cord of rats on day 15 after inoculation. Results: Pregnant rats developed less severe disease than non-pregnant rats. Serum from pregnant rats suppressed the proliferation of T lymphocytes in response to MBP. There was significantly increased expression of IL-4. IL-10 and TNF-alpha mRNA in the spinal cord infiltrate of pregnant rats. Conclusion: Circulating humoral factors and alteration in cytokine production by inflammatory cells may contribute to the suppression of EAE in pregnant rats.
Resumo:
The granulocyte colony-stimulating factor (G-CSF) and Fit-3 receptor agonist progenipoietin-1 (ProGP-1) has potent effects on dendritic cell (DC) expansion and may be an alternative to G-CSF for the mobilization of stem cells for allogeneic stem cell transplantation (SCT). We studied the ability of stem cell grafts mobilized with this agent to induce graft-versus-host disease (GVHD) to minor and major histocompatibility antigens in the well-described B6 --> B6D2F1 SCT model. ProGP-1, G-CSIF, or control diluent was administered to donor B6 mice. ProGP-1 expanded all cell lineages in the spleen, and unseparated splenocytes from these animals produced large amounts of interleukin 10 (IL-10) and transforming growth factor beta (TGFbeta) whereas the expression of T-cell adhesion molecules was diminished. Transplantation survival was 0%, 50%, and 90% in recipients of control-, G-CSF-, and ProGP-1-treated allogeneic donor splenocytes, respectively (P < .0001). Donor pretreatment with ProGP-1 allowed a 4-fold escalation in T-cell dose over that possible with G-CSF. Donor CD4 T cells from allogeneic SCT recipients of ProGP-1 splenocytes demonstrated an anergic response to host antigen, and cytokine production (interferon gamma [IFNγ], IL-4, and IL-10) was also reduced while CD8 T-cell cytotoxicity to host antigens remained intact. Neither CD11c(hi) DCs nor CD11c(dim)/B220(hi) DCs from ProGP-1-treated animals conferred protection from GVHD when added to control spleen. Conversely, when equal numbers of purified T cells from control-, G-CSF-, or ProGP-1-treated allogeneic donors were added to allogeneic T-cell-depleted control spleen, survival at day 60 was 0%, 15%, and 90%, respectively (P < .0001). The improved survival in recipients of ProGP-1 T cells was associated with reductions in systemic tumor necrosis factor alpha generation and GVHD of the gastrointestinal tract. We conclude that donor pretreatment with ProGP-1 is superior to G-CSIF for the prevention of GVHD after allogeneic SCT, primarily due to incremental affects on T-cell phenotype and function
Resumo:
The aim of this study was to determine nitric oxide (NO) production of a murine macrophage cell line (RAW 264.7 cells) when stimulated with Porphyromonas gingivalis lipopolysaccharides (Pg-LPS). RAW264.7 cells were incubated with i) various concentrations of Pg-LPS or Salmonella typhosa LPS (St-LPS), ii) Pg-LPS with or without L-arginine and/or N-G-monomethyl-L-arginine (NMMA), an arginine analog or iii) Pg-LPS and interferon-gamma (IFN-gamma) with or without anti-IFN-gamma antibodies or interleukin-10 (IL-10). Tissue culture supernatants were assayed for NO levels after 24 h in culture. NO was not observed in tissue culture supernatants of RAW 264.7 cells following stimulation with Pg-LPS, but was observed after stimulation with St-LPS. Exogenous L-arginine restored the ability of Pg-LPS to induce NO production; however, the increase in NO levels of cells stimulated with Pg-LPS with exogenous L-arginine was abolished by NMMA. IFN-gamma induced independent NO production by Pg-LPS-stimulated macrophages and this stimulatory effect of IFN-gamma could be completely suppressed by anti-IFN-gamma antibodies and IL-10. These results suggest that Pg-LPS is able to stimulate NO production in the RAW264.7 macrophage cell model in an L-arginine-dependent mechanism which is itself independent of the action of IFN-gamma.
Resumo:
Human Valpha24(+)Vbeta11(+) natural killer T (NKT) cells are a distinct CD1d-restricted lymphoid subset specifically and potently activated by alpha-galactosylceramide (alpha-GalCer) (KRN7000) presented by CD1 d on antigen-presenting cells. Preclinical models show that activation of Valpha24(+)Vbeta11(+) NKT cells induces effective antitumor immune responses and potentially important secondary immune effects, including activation of conventional T cells and NK cells. We describe the first clinical trial of cancer immune therapy with alpha-GalCer-pulsed CD1d-expressing dendritic cells. The results show that this therapy has substantial, rapid, and highly reproducible specific effects on Valpha24(+)Vbeta11(+) NKT cells and provide the first human in vivo evidence that Valpha24(+)Vbeta11(+) NKT cell stimulation leads to activation of both innate and acquired immunity, resulting in modulation of NK, T-, and B-cell numbers and increased serum interferon-gamma. We present the first clinical evidence that Valpha24(+)Vbeta11(+) NKT cell memory produces faster, more vigorous secondary immune responses by innate and acquired immunity upon restimulation.
Resumo:
Human Valpha24(+)Vbeta11(+) NKT (NKT) cells have immune regulatory activities associated with rejection of tumors, infections and control of autoimmune diseases. They can be stimulated to proliferate using alpha-galactosylceramide (KRN7000) and have the potential for therapeutic manipulation. Subpopulations of NKT cells (CD4(+)CD8(-), CD4(-)D8(+) and CD4(-)CD8(-)) have functionally distinctive Th1/Th2 cytokine profiles and their relative numbers following stimulation may influence the Th1/Th2 balance, which may result in or prevent disease. We aimed to determine the effect of different cytokines in culture during stimulation of NKT cells on the relative proportions of NKT cell subpopulations. Our results show that all NKT cell subpopulations expanded following stimulation with KRN7000 and IL-2, IL-7, IL-1 2 or IL-15. Expansion capacity differed between subpopulations, resulting in different relative proportions of CD4(+) and CD4(-) NKT cell subpopulations, and this was influenced by the cytokine used for stimulation. A Th1-biased environment was observed after stimulation of NKT cells. NKT cells expanded under all conditions evaluated demonstrated significant cytotoxicity against U937 tumor cells. In view of the potential for NKT cell subsets to alter the balance of Th1 and Th2 environment, these data provide insights into the effects of NKT cell manipulation for possible therapeutic applications in different disease settings.
Resumo:
Background: Although immunization with tumor antigens can eliminate many transplantable tumors in animal models, immune effector mechanisms associated with successful immunotherapy of epithelial cancers remain undefined. Methods: Skin from transgenic mice expressing the cervical cancer-associated tumor antigen human papillornavirus type 16 (HPV16) E6 or E7 proteins from a keratin 14 promoter was grafted onto syngeneic, non-transgenic mice. Skin graft rejection was measured after active immunization with HPV16 E7 and adoptive transfer of antigen-specific T cells. Cytokine secretion of lymphocytes from mice receiving skin grafts and immunotherapy was detected by enzyme-linked immunosorbent assay, and HPV16 E7-specific memory CD8(+) T cells were detected by flow cytometry and ELISPOT. Results: Skin grafts containing HPV16 E6- or E7-expressing keratinocytes were not rejected spontaneously or following immunization with E7 protein and adjuvant. Adoptive transfer of E7-specific T-cell receptor transgenic CD8(+) T cells combined with immunization resulted in induction of antigen-specific interferon gamma-secreting CD8(+) T cells and rejection of HPV16 E7-expressing grafts. Specific memory CD8(+) T cells were generated by immunotherapy. However, a further HPV16 E7 graft was rejected from animals with memory T cells only after a second E7 immunization. Conclusions: Antigen-specific CD8(+) T cells can destroy epithelium expressing HPV16 E7 tumor antigen, but presentation of E7 antigen from skin is insufficient to reactivate memory CD8(+) T cells induced by immunotherapy. Thus, effective cancer immunotherapy in humans may need to invoke sufficient effector as well as memory T cells.
Resumo:
Infection of humans with the West Nile flavivirus principally occurs via tick and mosquito bites. Here, we document the expression of antigen processing and presentation molecules in West Nile virus (WNV)-infected human skin fibroblast (HFF) cells. Using a new Flavivirus-specific antibody, 4G4, we have analyzed cell surface human leukocyte antigen (HLA) expression on virus-infected cells at a single cell level. Using this approach, we show that West Nile Virus infection alters surface HLA expression on both infected HFF and neighboring uninfected HFF cells. Interestingly, increased surface HLA evident on infected HFF cultures is almost entirely due to virus-induced interferon (IFN)alpha/beta because IFNalpha/beta-neutralizing antibodies completely prevent increased surface HLA expression. In contrast, RT-PCR analysis indicates that WNV infection results in increased mRNAs for HLA-A, -B, and -C genes, and HLA-associated molecules low molecular weight polypeptide-2 (LMP-2) and transporter associated with antigen presentation-1 (TAP-1), but induction of these mRNAs is not diminished in HFF cells cultured with IFNalpha/beta-neutralizing antibodies. Taken together, these data support the idea that that both cytokine-dependent and cytokine-independent mechanisms account for WNV-induced HLA expression in human skin fibroblasts. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Dendritic cells (DCs) regulate various aspects of innate immunity, including natural killer (NK) cell function. Here we define the mechanisms involved in DC - NK cell interactions during viral infection. NK cells were efficiently activated by murine cytomegalovirus ( MCMV) - infected CD11b(+) DCs. NK cell cytotoxicity required interferon-alpha and interactions between the NKG2D activating receptor and NKG2D ligand, whereas the production of interferon-gamma by NK cells relied mainly on DC-derived interleukin 18. Although Toll-like receptor 9 contributes to antiviral immunity, we found that signaling pathways independent of Toll-like receptor 9 were important in generating immune responses to MCMV, including the production of interferon-alpha and the induction of NK cell cytotoxicity. Notably, adoptive transfer of MCMV-activated CD11b(+) DCs resulted in improved control of MCMV infection, indicating that these cells participate in controlling viral replication in vivo.