52 resultados para Interfacing circuits
Resumo:
In this paper we describe an approach to interface Abstract State Machines (ASM) with Multiway Decision Graphs (MDG) to enable tool support for the formal verification of ASM descriptions. ASM is a specification method for software and hardware providing a powerful means of modeling various kinds of systems. MDGs are decision diagrams based on abstract representation of data and axe used primarily for modeling hardware systems. The notions of ASM and MDG axe hence closely related to each other, making it appealing to link these two concepts. The proposed interface between ASM and MDG uses two steps: first, the ASM model is transformed into a flat, simple transition system as an intermediate model. Second, this intermediate model is transformed into the syntax of the input language of the MDG tool, MDG-HDL. We have successfully applied this transformation scheme on a case study, the Island Tunnel Controller, where we automatically generated the corresponding MDG-HDL models from ASM specifications.
Resumo:
Traditionally the basal ganglia have been implicated in motor behavior, as they are involved in both the execution of automatic actions and the modification of ongoing actions in novel contexts. Corresponding to cognition, the role of the basal ganglia has not been defined as explicitly. Relative to linguistic processes, contemporary theories of subcortical participation in language have endorsed a role for the globus pallidus internus (GPi) in the control of lexical-semantic operations. However, attempts to empirically validate these postulates have been largely limited to neuropsychological investigations of verbal fluency abilities subsequent to pallidotomy. We evaluated the impact of bilateral posteroventral pallidotomy (BPVP) on language function across a range of general and high-level linguistic abilities, and validated/extended working theories of pallidal participation in language. Comprehensive linguistic profiles were compiled up to 1 month before and 3 months after BPVP in 6 subjects with Parkinson's disease (PD). Commensurate linguistic profiles were also gathered over a 3-month period for a nonsurgical control cohort of 16 subjects with PD and a group of 16 non-neurologically impaired controls (NC). Nonparametric between-groups comparisons were conducted and reliable change indices calculated, relative to baseline/3-month follow-up difference scores. Group-wise statistical comparisons between the three groups failed to reveal significant postoperative changes in language performance. Case-by-case data analysis relative to clinically consequential change indices revealed reliable alterations in performance across several language variables as a consequence of BPVP. These findings lend support to models of subcortical participation in language, which promote a role for the GPi in lexical-semantic manipulation mechanisms. Concomitant improvements and decrements in postoperative performance were interpreted within the context of additive and subtractive postlesional effects. Relative to parkinsonian cohorts, clinically reliable versus statistically significant changes on a case by case basis may provide the most accurate method of characterizing the way in which pathophysiologically divergent basal ganglia linguistic circuits respond to BPVP.
Resumo:
We review the description of noise in electronic circuits in terms of electron transport. The Poisson process is used as a unifying principle. In recent years, much attention has been given to current noise in light-emitting diodes and laser diodes. In these devices, random events associated with electron transport are correlated with photon emission times, thus modifying both the current statistics and the statistics of the emitted light. We give a review of experiments in this area with special emphasis on the ability of such devices to produce subshot-noise currents and light beams. Finally we consider the noise properties of a class of mesoscopic devices based on the quantum tunnelling of an electron into and out of a bound state. We present a simple quantum model of this process which confirms that the current noise in such a device should be subshot-noise.
Resumo:
The performance of three analytical methods for multiple-frequency bioelectrical impedance analysis (MFBIA) data was assessed. The methods were the established method of Cole and Cole, the newly proposed method of Siconolfi and co-workers and a modification of this procedure. Method performance was assessed from the adequacy of the curve fitting techniques, as judged by the correlation coefficient and standard error of the estimate, and the accuracy of the different methods in determining the theoretical values of impedance parameters describing a set of model electrical circuits. The experimental data were well fitted by all curve-fitting procedures (r = 0.9 with SEE 0.3 to 3.5% or better for most circuit-procedure combinations). Cole-Cole modelling provided the most accurate estimates of circuit impedance values, generally within 1-2% of the theoretical values, followed by the Siconolfi procedure using a sixth-order polynomial regression (1-6% variation). None of the methods, however, accurately estimated circuit parameters when the measured impedances were low (<20 Omega) reflecting the electronic limits of the impedance meter used. These data suggest that Cole-Cole modelling remains the preferred method for the analysis of MFBIA data.
Resumo:
Individuals with Autism Spectrum Disorder (ASD) are generally thought to have impaired attentional and executive function upon which all their cognitive and behaviour functions are based. Mental Rotation is a recognized visuo-spatial task, involving spatial working memory, known to involve activation in the fronto-parietal networks. To elucidate the functioning of fronto-parietal networks in ASD, the aim of this study was to use fMRI techniques with a mental rotation task, to characterize the underlying functional neural system. Sixteen male participants (seven highfunctioning autism or Asperger's syndrome; nine ageand performance IQ-matched controls) underwent fMRI. Participants were presented with 18 baseline and 18 rotation trials, with stimuli rotated 3- dimensionaUy (45°-180°). Data were acquired on a 3- Tesla scanner. The most widely accepted area reported to be involved in processing of visuo-spatial information. Posterior Parietal Cortex, was found to be activated in both groups, however, the ASD group showed decreased activation in cortical and subcortical frontal structures that are highly interconnected, including lateral and medial Brodmann area 6, frontal eye fields, caudate, dorsolateral prefrontal cortex and anterior cingulate. The suggested connectivity between these regions indicates that one or more circuits are impaired as a result of the disorder. In future it is hoped that we are able to identify the possible point of origin of this dysfunction, or indeed if the entire network is dysfunctional.
Resumo:
The role of physiological understanding in improving the efficiency of breeding programs is examined largely from the perspective of conventional breeding programs. Impact of physiological research to date on breeding programs, and the nature of that research, was assessed from (i) responses to a questionnaire distributed to plant breeders and physiologists, and (ii) a survey of literature abstracts. Ways to better utilise physiological understanding for improving breeding programs are suggested, together with possible constraints to delivering beneficial outcomes. Responses from the questionnaire indicated a general view that the contribution by crop physiology to date has been modest. However, most of those surveyed expected the contribution to be larger in the next 20 years. Some constraints to progress perceived by breeders and physiologists were highlighted. The survey of literature abstracts indicated that from a plant breeding perspective, much physiological research is not progressing further than making suggestions about possible approaches to selection. There was limited evidence in the literature of objective comparison of such suggestions with existing methodology, or of development and application of these within active breeding programs. It is argued in this paper that the development of outputs from physiological research for breeding requires a good understanding of the breeding program(s) being serviced and factors affecting its performance. Simple quantitative genetic models, or at least the ideas they represent, should be considered in conducting physiological research and in envisaging and evaluating outputs. The key steps of a generalised breeding program are outlined, and the potential pathways for physiological understanding to impact on these steps are discussed. Impact on breeding programs may arise through (i) better choice of environments in which to conduct selection trials, (ii) identification of selection criteria and traits for focused introgression programs, and (iii) identifying traits for indirect selection criteria as an adjunct to criteria already used. While many breeders and physiologists apparently recognise that physiological understanding may have a major role in the first area, there appears to be relatively Little research activity targeting this issue, and a corresponding bias, arguably unjustified, toward examining traits for indirect selection. Furthermore, research on traits aimed at crop improvement is often deficient because key genetic parameters, such as genetic variation in relevant breeding populations and genetic (as opposed to phenotypic) correlations with yield or other characters of economic importance, are not properly considered in the research. Some areas requiring special attention for successfully interfacing physiology research with breeding are discussed. These include (i) the need to work with relevant genetic populations, (ii) close integration of the physiological research with an active breeding program, and (iii) the dangers of a pre-defined or narrow focus in the physiological research.
Resumo:
The technical reliability (i.e., interinstrument and interoperator reliability) of three SEAC-swept frequency bioimpedance monitors was assessed for both errors of measurement and associated analyses. In addition, intraoperator and intrainstrument variability was evaluated for repeat measures over a 4-hour period. The measured impedance values from a range of resistance-capacitance circuits were accurate to within 3% of theoretical values over a range of 50-800 ohms. Similarly, phase was measured over the range 1 degrees-19 degrees with a maximum deviation of 1.3 degrees from the theoretical value. The extrapolated impedance at zero frequency was equally well determined (+/-3%). However, the accuracy of the extrapolated value at infinite frequency was decreased, particularly at impedances below 50 ohms (approaching the lower limit of the measurement range of the instrument). The interinstrument/operator variation for whole body measurements were recorded on human volunteers with biases of less than +/-1% for measured impedance values and less than 3% for phase. The variation in the extrapolated values of impedance at zero and infinite frequencies included variations due to operator choice of the analysis parameters but was still less than +/-0.5%. (C) 1997 Wiley-Liss, Inc.
Resumo:
Propylthiouracil (PTU) is widely believed to cross the placenta less freely than methimazole (MMI) and is therefore regarded as the preferred drug for treatment of hyperthyroidism in pregnancy. Clinical studies comparing the two drugs show, however, no differences in maternal or fetal thyroid function. We investigated transfer from the maternal to the fetal circuit in the isolated perfused term human placental lobule of low and high doses of PTU (4 mu g/mL and 40 mu g/mL) and MMI(1.5 mu g/mL and 15 mu g/mL) in protein-free perfusate and low doses of both drugs with addition of 40 g/L of bovine albumin. Both drugs readily crossed the placenta, reaching equilibrium in all experiments in about 2 h. Drug concentrations in the two circuits fitted a two compartmental model. Transfer kinetics for the two drugs were similar, nonsaturable, and unaffected by addition of albumin. Clearances (mL.min(-1).g(-1), means +/- SD) of PTU from maternal to fetal circuits were: 0.229 +/- 0.110, 0.216 +/- 0.065, and 0.170 +/- 0.032; and for transfer of MMI: 0.165 +/- 0.025, 0.232 +/- 0.153, and 0.174 +/- 0.009 (for low doses without, low doses with, and high doses without albumin, respectively). Clearances of PTU from fetal to maternal circuits were: 0.147 +/- 0.072, 0.109 +/- 0.014, and 0.116 +/- 0.028; and for transfer of MMI: 0.095 +/- 0.029, 0.122 +/- 0.088, and 0.12 +/- 0.005 (in the same experiments). There was no significant difference between drugs or drug doses and no effect of addition of albumin. We conclude that PTU and MMI have similar placental transfer kinetics.
Resumo:
The present research investigated blink startle modulation during the anticipation of pleasant, unpleasant, or neutral pictures. In Experiment 1 (N = 18), participants were presented with three different tone-picture pairings. Tones differed in pitch and were followed by pleasant, neutral or unpleasant pictures. Acoustic blink reflexes were elicited during some tones and during stimulus free intervals. Blink facilitation during tones that preceded pleasant and unpleasant pictures was larger than during the tone that preceded neutral pictures. Experiment 2 (N = 10) assessed whether this difference was due to a difference in the presentation frequency of the three conditions. No difference in blink facilitation between the conditions was found when pictures of flowers and mushrooms replaced the pleasant and unpleasant pictures, indicating that picture content was instrumental in causing the differential blink facilitation in Experiment 1. The results from Experiment 1 seem to indicate that startle modulation during the anticipation of pictorial material reflects the interest in or the arousal associated with the pictures rather than picture valence.
Resumo:
Bond's method for ball mill scale-up only gives the mill power draw for a given duty. This method is incompatible with computer modelling and simulation techniques. It might not be applicable for the design of fine grinding ball mills and ball mills preceded by autogenous and semi-autogenous grinding mills. Model-based ball mill scale-up methods have not been validated using a wide range of full-scale circuit data. Their accuracy is therefore questionable. Some of these methods also need expensive pilot testing. A new ball mill scale-up procedure is developed which does not have these limitations. This procedure uses data from two laboratory tests to determine the parameters of a ball mill model. A set of scale-up criteria then scales-up these parameters. The procedure uses the scaled-up parameters to simulate the steady state performance of full-scale mill circuits. At the end of the simulation, the scale-up procedure gives the size distribution, the volumetric flowrate and the mass flowrate of all the streams in the circuit, and the mill power draw.
Resumo:
A new ball mill scale-up procedure is developed which uses laboratory data to predict the performance of MI-scale ball mill circuits. This procedure contains two laboratory tests. These laboratory tests give the data for the determination of the parameters of a ball mill model. A set of scale-up criteria then scales-up these parameters. The procedure uses the scaled-up parameters to simulate the steady state performance of the full-scale mill circuit. At the end of the simulation, the scale-up procedure gives the size distribution, the volumetric flowrate and the mass flowrate of all the streams in the circuit, and the mill power draw. A worked example shows how the new ball mill scale-up procedure is executed. This worked example uses laboratory data to predict the performance of a full-scale re-grind mill circuit. This circuit consists of a ball mill in closed circuit with hydrocyclones. The MI-scale ball mill has a diameter (inside liners) of 1.85m. The scale-up procedure shows that the full-scale circuit produces a product (hydrocyclone overflow) that has an 80% passing size of 80 mum. The circuit has a recirculating load of 173%. The calculated power draw of the full-scale mill is 92kW (C) 2001 Elsevier Science Ltd. All rights reserved.