43 resultados para Interface algorithms
Resumo:
A robust semi-implicit central partial difference algorithm for the numerical solution of coupled stochastic parabolic partial differential equations (PDEs) is described. This can be used for calculating correlation functions of systems of interacting stochastic fields. Such field equations can arise in the description of Hamiltonian and open systems in the physics of nonlinear processes, and may include multiplicative noise sources. The algorithm can be used for studying the properties of nonlinear quantum or classical field theories. The general approach is outlined and applied to a specific example, namely the quantum statistical fluctuations of ultra-short optical pulses in chi((2)) parametric waveguides. This example uses a non-diagonal coherent state representation, and correctly predicts the sub-shot noise level spectral fluctuations observed in homodyne detection measurements. It is expected that the methods used wilt be applicable for higher-order correlation functions and other physical problems as well. A stochastic differencing technique for reducing sampling errors is also introduced. This involves solving nonlinear stochastic parabolic PDEs in combination with a reference process, which uses the Wigner representation in the example presented here. A computer implementation on MIMD parallel architectures is discussed. (C) 1997 Academic Press.
Resumo:
An algorithm for explicit integration of structural dynamics problems with multiple time steps is proposed that averages accelerations to obtain subcycle states at a nodal interface between regions integrated with different time steps. With integer time step ratios, the resulting subcycle updates at the interface sum to give the same effect as a central difference update over a major cycle. The algorithm is shown to have good accuracy, and stability properties in linear elastic analysis similar to those of constant velocity subcycling algorithms. The implementation of a generalised form of the algorithm with non-integer time step ratios is presented. (C) 1997 by John Wiley & Sons, Ltd.
Resumo:
The concept of parameter-space size adjustment is pn,posed in order to enable successful application of genetic algorithms to continuous optimization problems. Performance of genetic algorithms with six different combinations of selection and reproduction mechanisms, with and without parameter-space size adjustment, were severely tested on eleven multiminima test functions. An algorithm with the best performance was employed for the determination of the model parameters of the optical constants of Pt, Ni and Cr.
Resumo:
We suggest a new notion of behaviour preserving transition refinement based on partial order semantics. This notion is called transition refinement. We introduced transition refinement for elementary (low-level) Petri Nets earlier. For modelling and verifying complex distributed algorithms, high-level (Algebraic) Petri nets are usually used. In this paper, we define transition refinement for Algebraic Petri Nets. This notion is more powerful than transition refinement for elementary Petri nets because it corresponds to the simultaneous refinement of several transitions in an elementary Petri net. Transition refinement is particularly suitable for refinement steps that increase the degree of distribution of an algorithm, e.g. when synchronous communication is replaced by asynchronous message passing. We study how to prove that a replacement of a transition is a transition refinement.
Resumo:
Numerical optimisation methods are being more commonly applied to agricultural systems models, to identify the most profitable management strategies. The available optimisation algorithms are reviewed and compared, with literature and our studies identifying evolutionary algorithms (including genetic algorithms) as superior in this regard to simulated annealing, tabu search, hill-climbing, and direct-search methods. Results of a complex beef property optimisation, using a real-value genetic algorithm, are presented. The relative contributions of the range of operational options and parameters of this method are discussed, and general recommendations listed to assist practitioners applying evolutionary algorithms to the solution of agricultural systems. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
For a two layered long wave propagation, linearized governing equations, which were derived earlier from the Euler equations of mass and momentum assuming negligible friction and interfacial mixing are solved analytically using Fourier transform. For the solution, variations of upper layer water level is assumed to be sinosoidal having known amplitude and variations of interface level is solved. As the governing equations are too complex to solve it analytically, density of upper layer fluid is assumed as very close to the density of lower layer fluid to simplify the lower layer equation. A numerical model is developed using the staggered leap-forg scheme for computation of water level and discharge in one dimensional propagation having known amplitude for the variations of upper layer water level and interface level to be solved. For the numerical model, water levels (upper layer and interface) at both the boundaries are assumed to be known from analytical solution. Results of numerical model are verified by comparing with the analytical solutions for different time period. Good agreements between analytical solution and numerical model are found for the stated boundary condition. The reliability of the developed numerical model is discussed, using it for different a (ratio of density of fluid in the upper layer to that in the lower layer) and p (ratio of water depth in the lower layer to that in the upper layer) values. It is found that as ‘CX’ increases amplification of interface also increases for same upper layer amplitude. Again for a constant lower layer depth, as ‘p’ increases amplification of interface. also increases for same upper layer amplitude.
Resumo:
Over the past thirty years in Australia, there has been a recognition of the need for increasing Aboriginal and Torres Strait Islander participation in the management of their health services as part of the strategy to improve the poor health of Australia's indigenous peoples. The proliferation of Aboriginal Community-Controlled Health Services and the vigorous advocacy of groups such as the National Aboriginal Community Controlled Health Organisation have significantly contributed to this recognition. This, combined with additional management opportunities in government service, has drawn attention to difficulties in recruiting and retaining appropriately experienced Aboriginal and Torres Strait Islander managers, particularly in the northern states of Australia. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The generalization of the quasi mode theory of macroscopic quantization in quantum optics and cavity QED presented in the previous paper, is applied to provide a fully quantum theoretic derivation of the laws of reflection and refraction at a boundary. The quasi mode picture of this process involves the annihilation of a photon travelling in the incident region quasi mode, and the subsequent creation of a photon in either the incident region or transmitted region quasi modes. The derivation of the laws of reflection and refraction is achieved through the dual application of the quasi mode theory and a quantum scattering theory based on the Heisenberg picture. Formal expressions from scattering theory are given for the reflection and transmission coefficients. The behaviour of the intensity for a localized one photon wave packet coming in at time minus infinity from the incident direction is examined and it is shown that at time plus infinity, the light intensity is only significant where the classical laws of reflection and refraction predict. The occurrence of both refraction and reflection is dependent upon the quasi mode theory coupling constants between incident and transmitted region quasi modes being nonzero, and it is seen that the contributions to such coupling constants come from the overlap of the mode functions in the boundary layer region, as might be expected from a microscopic theory.