46 resultados para Integer programming, Constraint programming, Sugarcane rail, Job shop
Resumo:
Taking functional programming to its extremities in search of simplicity still requires integration with other development (e.g. formal) methods. Induction is the key to deriving and verifying functional programs, but can be simplified through packaging proofs with functions, particularly folds, on data (structures). Totally Functional Programming avoids the complexities of interpretation by directly representing data (structures) as platonic combinators - the functions characteristic to the data. The link between the two simplifications is that platonic combinators are a kind of partially-applied fold, which means that platonic combinators inherit fold-theoretic properties, but with some apparent simplifications due to the platonic combinator representation. However, despite observable behaviour within functional programming that suggests that TFP is widely-applicable, significant work remains before TFP as such could be widely adopted.
Resumo:
Although planning is important for the functioning of patients with dementia of the Alzheimer Type (DAT), little is known about response programming in DAT. This study used a cueing paradigm coupled with quantitative kinematic analysis to document the preparation and execution of movements made by a group of 12 DAT patients and their age and sex matched controls. Participants connected a series of targets placed upon a WACOM SD420 graphics tablet, in response to the pattern of illumination of a set of light emitting diodes (LEDs). In one condition, participants could programme the upcoming movement, whilst in another they were forced to reprogramme this movement on-line (i.e. they were not provided with advance information about the location of the upcoming target). DAT patients were found to have programming deficits, taking longer to initiate movements; particularly in the absence of cues. While problems spontaneously programming a movement might cause a greater reliance upon on-line guidance, when both groups were required to guide the movement on-line, DAT patients continued to show slower and less efficient movements implying declining sensori-motor function; these differences were not simply due to strategy or medication status. (C) 1997 Elsevier Science Ltd.
Resumo:
Map algebra is a data model and simple functional notation to study the distribution and patterns of spatial phenomena. It uses a uniform representation of space as discrete grids, which are organized into layers. This paper discusses extensions to map algebra to handle neighborhood operations with a new data type called a template. Templates provide general windowing operations on grids to enable spatial models for cellular automata, mathematical morphology, and local spatial statistics. A programming language for map algebra that incorporates templates and special processing constructs is described. The programming language is called MapScript. Example program scripts are presented to perform diverse and interesting neighborhood analysis for descriptive, model-based and processed-based analysis.
Resumo:
A decision theory framework can be a powerful technique to derive optimal management decisions for endangered species. We built a spatially realistic stochastic metapopulation model for the Mount Lofty Ranges Southern Emu-wren (Stipiturus malachurus intermedius), a critically endangered Australian bird. Using diserete-time Markov,chains to describe the dynamics of a metapopulation and stochastic dynamic programming (SDP) to find optimal solutions, we evaluated the following different management decisions: enlarging existing patches, linking patches via corridors, and creating a new patch. This is the first application of SDP to optimal landscape reconstruction and one of the few times that landscape reconstruction dynamics have been integrated with population dynamics. SDP is a powerful tool that has advantages over standard Monte Carlo simulation methods because it can give the exact optimal strategy for every landscape configuration (combination of patch areas and presence of corridors) and pattern of metapopulation occupancy, as well as a trajectory of strategies. It is useful when a sequence of management actions can be performed over a given time horizon, as is the case for many endangered species recovery programs, where only fixed amounts of resources are available in each time step. However, it is generally limited by computational constraints to rather small networks of patches. The model shows that optimal metapopulation, management decisions depend greatly on the current state of the metapopulation,. and there is no strategy that is universally the best. The extinction probability over 30 yr for the optimal state-dependent management actions is 50-80% better than no management, whereas the best fixed state-independent sets of strategies are only 30% better than no management. This highlights the advantages of using a decision theory tool to investigate conservation strategies for metapopulations. It is clear from these results that the sequence of management actions is critical, and this can only be effectively derived from stochastic dynamic programming. The model illustrates the underlying difficulty in determining simple rules of thumb for the sequence of management actions for a metapopulation. This use of a decision theory framework extends the capacity of population viability analysis (PVA) to manage threatened species.
Resumo:
This paper focuses on measuring the extent to which market power has been exercised in a recently deregulated electricity generation sector. Our study emphasises the need to consider the concept of market power in a long-run dynamic context. A market power index is constructed focusing on differences between actual market returns and long-run competitive returns, estimated using a programming model devised by the authors. The market power implications of hedge contracts are briefly considered. The state of Queensland Australia is used as a context for the analysis. The results suggest that generators have exercised significant market power since deregulation.
Resumo:
In this paper, we consider dynamic programming for the election timing in the majoritarian parliamentary system such as in Australia, where the government has a constitutional right to call an early election. This right can give the government an advantage to remain in power for as long as possible by calling an election, when its popularity is high. On the other hand, the opposition's natural objective is to gain power, and it will apply controls termed as "boosts" to reduce the chance of the government being re-elected by introducing policy and economic responses. In this paper, we explore equilibrium solutions to the government, and the opposition strategies in a political game using stochastic dynamic programming. Results are given in terms of the expected remaining life in power, call and boost probabilities at each time at any level of popularity.
Resumo:
Defeasible reasoning is a simple but efficient approach to nonmonotonic reasoning that has recently attracted considerable interest and that has found various applications. Defeasible logic and its variants are an important family of defeasible reasoning methods. So far no relationship has been established between defeasible logic and mainstream nonmonotonic reasoning approaches. In this paper we establish close links to known semantics of logic programs. In particular, we give a translation of a defeasible theory D into a meta-program P(D). We show that under a condition of decisiveness, the defeasible consequences of D correspond exactly to the sceptical conclusions of P(D) under the stable model semantics. Without decisiveness, the result holds only in one direction (all defeasible consequences of D are included in all stable models of P(D)). If we wish a complete embedding for the general case, we need to use the Kunen semantics of P(D), instead.
Resumo:
The application of energy minimisation methods for stereo matching has been demonstrated to produce high quality disparity maps. However the majority of these methods are known to be computationally expensive, requiring minutes or even hours of computation. We propose a fast minimisation scheme that produces strongly competitive results for significantly reduced computation, requiring only a few seconds of computation. In this paper, we present our iterated dynamic programming algorithm along with a quadtree subregioning process for fast stereo matching.
Resumo:
"Totally functional programming" (TFP) advocates the complete replacement of symbolic representations for data by functions. TFP is motivated by observations from practice in language extensibility and functional programming. Its technical essence extends the role of "fold" functions in structuring functional programs to include methods that make comparisons on elements of data structures. The obstacles that currently prevent the immediate uptake of TFP as a style within functional programming equally indicate future research directions in the areas of theoretical foundations, supporting technical infrastructure, demonstrated practical applicability, and relationship to OOP.