19 resultados para Immunoglobulin M
Resumo:
TSLC1 (tumor suppressor in lung cancer-1, IGSF4) encodes a member of the immunoglobulin superfamily molecules, which is involved in cell-cell adhesion. TSLC1 is connected to the actin cytoskeleton by DAL-1 (differentially expressed in adenocarcinoma of the lung-1, EPB41L3) and it directly associates with MPP3, one of the human homologues of a Drosophila tumor suppressor gene, Discs large. Recent data suggest that aberrant promoter methylation is important for TSLC1 inactivation in lung carcinomas. However, little is known about the other two genes in this cascade, DAL-1 and MPP3. Thus, we investigated the expression and methylation patterns of these genes in lung cancer cell lines, primary lung carcinomas and nonmalignant lung tissue samples. By reverse transcription-polymerase chain reaction, loss of TSLC1 expression was observed in seven of 16 (44%) non-small-cell lung cancer (NSCLC) cell lines and in one of 11 (9%) small-cell lung cancer (SCLC) cell lines, while loss of DAL- 1 expression was seen in 14 of 16 (87%) NSCLC cell lines and in four of 11 (36%) SCLC cell lines. By contrast, MPP3 expression was found in all tumor cell lines analysed. Similar results were obtained by microarray analysis. TSLC1 methylation was seen in 13 of 39 (33%) NSC LC cell lines, in one of 11 (9%) SCLC cell lines and in 100 of 268 (37%) primary NSCLCs. DAL-1 methylation was observed in 17 of 39 (44%) NSCLC cell lines, in three of 11 (27%) SCLC cell lines and in 147 of 268 (55%) primary NSCLCs. In tumors of NSCLC patients with stage II-III disease, DAL-1 methylation was seen at a statistically significant higher frequency compared to tumors of patients with stage I disease. A significant correlation between loss of expression and methylation of the genes in lung cancer cell lines was found. Overall, 65% of primary NSCLCs had either TSLC1 or DAL-1 methylated. Methylation of one of these genes was detected in 59% of NSCLC cell lines; however, in SCLC cell lines, methylation was much less frequently observed. The majority of nonmalignant lung tissue samples was not TSLC1 and DAL-1 methylated. Re-expression of TSLC1 and DAL-1 was seen after treatment of lung cancer cell lines with 5-aza-2$-deoxy-cytidine. Our results suggest that methylation of TSLC1 and/or DAL-1, leading to loss of their expression, is an important event in the pathogenesis of NSCLC.
Resumo:
Objective: To present the clinical features and management outcome in a large series of patients with periocular and orbital amyloidosis. Design: Retrospective, noncomparative, interventional case series. Patients: All patients diagnosed with periocular and orbital amyloidosis in 6 oculoplastic and orbital units. Methods: Clinical records of all patients were reviewed. Main Outcome Measures: Clinical presentation, radiological and histological findings, treatment modalities, and outcome. Results. The study included 24 patients (15 female, 9 male) with a mean age of 57 17 years. Nineteen cases were unilateral, and 5 were bilateral. Clinical signs and symptoms included a visible or palpable periocular mass or tissue infiltration (95.8%), ptosis (54.2%), periocular discomfort or pain (25%), proptosis or globe displacement (21%), limitations in ocular motility (16.7%), recurrent periocular subcutaneous hemorrhages (12.5%), and diplopia (8.3%). Seven cases had orbital involvement, and 17 were periocular. Immunohistochemistry in 7 patients showed B cells or plasma cells producing monoclonal immunoglobulin chains that were deposited as amyloid light chains. Only 1 patient was diagnosed with systemic amyloid light chain amyloidosis. Treatment modalities were mainly observation and surgical debulking. During a mean follow-up period of 39 months, 21% showed significant progression after treatment, whereas 79% were stable or showed no recurrence after treatment. Conclusion: Periocular and orbital amyloidosis may present with a wide spectrum of clinical findings and result in significant ocular morbidity. Complete surgical excision is not feasible in many cases, and the goal of treatment is to preserve function and to prevent sight-threatening complications.
Conservation and accessibility of an inner core lipopolysaccharide epitope of Neisseria meningitidis
Resumo:
We investigated the conservation and antibody accessibility of inner core epitopes of Neisseria meningitidis lipopolysaccharide (LPS) because of their potential as vaccine candidates. An immunoglobulin G3 murine monoclonal antibody (MAb), designated MAb B5, was obtained by immunizing mice with a galE mutant of N. meningitidis H44/76 (B.15.P1.7,16 immunotype L3). We have shown that MAb B5 can bind to the core LPS of wild-type encapsulated MC58 (B.15.P1.7,16 immunotype L3) organisms in vitro and ex vivo. An inner core structure recognized by MAb B5 is conserved and accessible in 26 of 34 (76%) of group B and 78 of 112 (70%) of groups A, C, W, X, Y, and Z strains. N. meningitidis strains which possess this epitope are immunotypes in which phosphoethanolamine (PEtn) is linked to the 3-position of the beta-chain heptose (HepII) of the inner core. In contrast, N. neningitidis strains lacking reactivity with MAb B5 have an alternative core structure in which PEtn is linked to an exocyclic position (i.e., position 6 or 7) of HepII (immunotypes L2, L4, and L6) or is absent (immunotype L5). We conclude that MAb B5 defines one or more of the major inner core glycoforms of N. meningitidis LPS. These findings support the possibility that immunogens capable of eliciting functional antibodies specific to inner core structures could be the basis of a vaccine against invasive infections caused by N. meningitidis.
Resumo:
Human papillomavirus virus-like particles (HPV VLP) can be generated by the synthesis and self-assembly in vitro of the major virus capsid protein L1. HPV L1 VLPs are morphologically and antigenically almost identical to native virions, and this technology has been exploited to produce HPV L1 VLP subunit vaccines. The vaccines elicit high titres of anti-L I VLP antibodies that persist at levels 10 times that of natural infections for at least 48 months. At present the assumption is that the protection achieved by these vaccines against incident HPV infection and HPV-associated ano-genital pathology is mediated via serum neutralising Immunoglobulin G (IgG). However, since there have been very few vaccine failures thus far, immune correlates of protection have not been established. The available evidence is that the immunodominant neutralising antibodies generated by L1 VLPs are type-specific and are not cross-neutralising, although highly homologous HPV pairs share minor cross-neutralisation epitopes. Important issues remaining to be addressed include the duration of protection and genotype replacement. (c) 2006 Elsevier Ltd. All rights reserved.