69 resultados para Identification of individuals
Resumo:
Examination of store-operated Ca2+ entry (SOC) in single, mechanically skinned skeletal muscle cells by confocal microscopy shows that the inositol 1,4,5-trisphosphate (IP3) receptor acts as a sarcoplasmic reticulum [Ca2+] sensor and mediates SOC by physical coupling without playing a key role in Ca2+ release from internal stores, as is the case with various cell types in which SOC was investigated previously. The results have broad implications for understanding the mechanism of SOC that is essential for cell function in general and muscle function in particular. Moreover, the study ascribes an important role to the IN receptors in skeletal muscle, the role of which with respect to Ca2+ homeostasis was ill defined until now.
Resumo:
The majority of common diseases such as cancer, allergy, diabetes, or heart disease are characterized by complex genetic traits, in which genetic and environmental components contribute to disease susceptibility. Our knowledge of the genetic factors underlying most of such diseases is limited. A major goal in the post-genomic era is to identify and characterize disease susceptibility genes and to use this knowledge for disease treatment and prevention. More than 500 genes are conserved across the invertebrate and vertebrate genomes. Because of gene conservation, various organisms including yeast, fruitfly, zebrafish, rat, and mouse have been used as genetic models.
Resumo:
Human N-acetyltransferase Type I (NAT1) catalyses the acetylation of many aromatic amine and hydrazine compounds and it has been implicated in the catabolism of folic acid. The enzyme is widely expressed in the body, although there are considerable differences in the level of activity between tissues. A search of the mRNA databases revealed the presence of several NAT1 transcripts in human tissue that appear to be derived from different promoters. Because little is known about NAT1 gene regulation, the present study was undertaken to characterize one of the putative promoter sequences of the NAT1 gene located just upstream of the coding region. We show with reverse-transcriptase PCR that mRNA transcribed from this promoter (Promoter 1) is present in a variety of human cell-lines, but not in quiescent peripheral blood mononuclear cells. Using deletion mutant constructs, we identified a 20 bp sequence located 245 bases upstream of the translation start site which was sufficient for basal NAT1 expression. It comprised an AP-1 (activator protein 1)-binding site, flanked on either side by a TCATT motif. Mutational analysis showed that the AP-1 site and the 3' TCATT sequence were necessary for gene expression, whereas the 5' TCATT appeared to attenuate promoter activity. Electromobility shift assays revealed two specific bands made up by complexes of c-Fos/Fra, c-Jun, YY-1 (Yin and Yang 1) and possibly Oct-1. PMA treatment enhanced expression from the NAT1 promoter via the AP-1-binding site. Furthermore, in peripheral blood mononuclear cells, PMA increased endogenous NAT1 activity and induced mRNA expression from Promoter I, suggesting that it is functional in vivo.
Resumo:
Background: A major goal in the post-genomic era is to identify and characterise disease susceptibility genes and to apply this knowledge to disease prevention and treatment. Rodents and humans have remarkably similar genomes and share closely related biochemical, physiological and pathological pathways. In this work we utilised the latest information on the mouse transcriptome as revealed by the RIKEN FANTOM2 project to identify novel human disease-related candidate genes. We define a new term patholog to mean a homolog of a human disease-related gene encoding a product ( transcript, anti-sense or protein) potentially relevant to disease. Rather than just focus on Mendelian inheritance, we applied the analysis to all potential pathologs regardless of their inheritance pattern. Results: Bioinformatic analysis and human curation of 60,770 RIKEN full-length mouse cDNA clones produced 2,578 sequences that showed similarity ( 70 - 85% identity) to known human-disease genes. Using a newly developed biological information extraction and annotation tool ( FACTS) in parallel with human expert analysis of 17,051 MEDLINE scientific abstracts we identified 182 novel potential pathologs. Of these, 36 were identified by computational tools only, 49 by human expert analysis only and 97 by both methods. These pathologs were related to neoplastic ( 53%), hereditary ( 24%), immunological ( 5%), cardio-vascular (4%), or other (14%), disorders. Conclusions: Large scale genome projects continue to produce a vast amount of data with potential application to the study of human disease. For this potential to be realised we need intelligent strategies for data categorisation and the ability to link sequence data with relevant literature. This paper demonstrates the power of combining human expert annotation with FACTS, a newly developed bioinformatics tool, to identify novel pathologs from within large-scale mouse transcript datasets.
Resumo:
We describe here two new transposable elements, CemaT4 and CemaT5, that were identified within the sequenced genome of Caenorhabditis elegans using homology based searches. Five variants of CemaT4 were found, all non-autonomous and sharing 26 bp inverted terminal repeats (ITRs) and segments (152-367 bp) of sequence with similarity to the CemaT1 transposon of C. elegans. Sixteen copies of a short, 30 bp repetitive sequence, comprised entirely of an inverted repeat of the first 15 bp of CemaT4's ITR, were also found, each flanked by TA dinucleotide duplications, which are hallmarks of target site duplications of mariner-Tc transposon transpositions. The CemaT5 transposable element had no similarity to maT elements, except for sharing identical ITR sequences with CemaT3. We provide evidence that CemaT5 and CemaT3 are capable of excising from the C. elegans genome, despite neither transposon being capable of encoding a functional transposase enzyme. Presumably, these two transposons are cross-mobilised by an autonomous transposon that recognises their shared ITRs. The excisions of these and other non-autonomous elements may provide opportunities for abortive gap repair to create internal deletions and/or insert novel sequence within these transposons. The influence of non-autonomous element mobility and structural diversity on genome variation is discussed.
Resumo:
There is a widely held paradigm that mangroves are critical for sustaining production in coastal fisheries through their role as important nursery areas for fisheries species. This paradigm frequently forms the basis for important management decisions on habitat conservation and restoration of mangroves and other coastal wetlands. This paper reviews the current status of the paradigm and synthesises the information on the processes underlying these potential links. In the past, the paradigm has been supported by studies identifying correlations between the areal and linear extent of mangroves and fisheries catch. This paper goes beyond the correlative approach to develop a new framework on which future evaluations can be based. First, the review identifies what type of marine animals are using mangroves and at what life stages. These species can be categorised as estuarine residents, marine-estuarine species and marine stragglers. The marine-estuarine category includes many commercial species that use mangrove habitats as nurseries. The second stage is to determine why these species are using mangroves as nurseries. The three main proposals are that mangroves provide a refuge from predators, high levels of nutrients and shelter from physical disturbances. The recognition of the important attributes of mangrove nurseries then allows an evaluation of how changes in mangroves will affect the associated fauna. Surprisingly few studies have addressed this question. Consequently, it is difficult to predict how changes in any of these mangrove attributes would affect the faunal communities within them and, ultimately, influence the fisheries associated with them. From the information available, it seems likely that reductions in mangrove habitat complexity would reduce the biodiversity and abundance of the associated fauna, and these changes have the potential to cause cascading effects at higher trophic levels with possible consequences for fisheries. Finally, there is a discussion of the data that are currently available on mangrove distribution and fisheries catch, the limitations of these data and how best to use the data to understand mangrove-fisheries links and, ultimately, to optimise habitat and fisheries management. Examples are drawn from two relatively data-rich regions, Moreton Bay (Australia) and Western Peninsular Malaysia, to illustrate the data needs and research requirements for investigating the mangrove-fisheries paradigm. Having reliable and accurate data at appropriate spatial and temporal scales is crucial for mangrove-fisheries investigations. Recommendations are made for improvements to data collection methods that would meet these important criteria. This review provides a framework on which to base future investigations of mangrove-fisheries links, based on an understanding of the underlying processes and the need for rigorous data collection. Without this information, the understanding of the relationship between mangroves and fisheries will remain limited. Future investigations of mangrove-fisheries links must take this into account in order to have a good ecological basis and to provide better information and understanding to both fisheries and conservation managers.
Resumo:
This paper presents major findings from a recent study aiming to systematically determine suitable river sections for local domestic water supply along the Yangtze River in Jiangsu Province, China. On the basis of analysis on the current riverbank utilization and bank stability, accessible and stable river sections in the region were selected. The water quality in these river sections was then studied using a two-dimensional unsteady flow and pollutant transport/transformation model, RBFVM-2D. The model was calibrated and verified against the hydrodynamic data, water quality data and remote sensing data collected from the river. The investigation on the pollution sources along the river identified 56 main pollution point sources. The pollution zones downstream of these point sources are the main threat for the water quality in the river. The model was used to compute the pollution zones. In particular, simulations were conducted to establish the relationship between the extent of the pollution zone and the wastewater discharge rate of the associated point source. These water quality simulation results were combined with the riverbank stability analysis to determine suitable river sections for local domestic water supply.
Resumo:
Bacteria phenotypically resembling members of the phylogenetically distinct planctomycete group of the domain Bacteria were isolated from postlarvae of the giant tiger prawn, Penaeus monodon. A selective medium designed in the light of planctomycete antibiotic resistance characteristics was used for this isolation. Planctomycetes were isolated from both healthy and monodon baculovirus-infected prawn postlarvae, The predominant colony type recovered from postlarvae regardless of viral infection status was nonpigmented. Other, less commonly observed types were pink or orange pigmented, A planctomycete-specific 16S rRNA-directed probe was designed and used to screen the isolates for their identity as planctomycetes prior to molecular phylogenetic characterization. 16S rRNA genes from nine prawn isolates together with two planctomycete reference strains (Planctomyces brasiliensis and Gemmata obscuriglobus) were sequenced and compared with reference sequences from the planctomycetes and other members of the domain Bacteria, Phylogenetic analyses and sequence signatures of the 16S rRNA genes demonstrated that the prawn isolates were members of the planctomycete group, Five representatives of the predominant nonpigmented colony type were members of the Pirellula group within the planctomycetes, as were three pink-pigmented colony type representatives. Homology values and tree topology indicated that representatives of the nonpigmented and pink-pigmented colony types formed two discrete clusters within the Pirellula group, not identical to any known Pirellula species, A sole representative of the orange colony type was a member of the Planctomyces group, virtually identical in 16S rDNA sequence to P. brasiliensis, and exhibited distinctive morphology.
Resumo:
Fast synaptic neurotransmission is mediated by transmitter-activated conformational changes in ligand-gated ion channel receptors, culminating in opening of the integral ion channel pore. Human hereditary hyperekplexia, or startle disease, is caused by mutations in both the intracellular or extracellular loops flanking the pore-lining M2 domain of the glycine receptor alpha 1 subunit. These flanking domains are designated the M1-M2 loop and the M2-M3 loop respectively. We show that four startle disease mutations and six additional alanine substitution mutations distributed throughout both loops result in uncoupling of the ligand binding sites from the channel activation gate. We therefore conclude that the M1-M2 and M2-M3 loops act in parallel to activate the channel. Their locations strongly suggest that they act as hinges governing allosteric control of the M2 domain. As the members of the ligand-gated ion channel superfamily share a common structure, this signal transduction model may apply to all members of this superfamily.
Resumo:
Papillomaviruses (PVs) bind in a specific and saturable fashion to a range of epithelial and other cell lines. Treatment of cells with trypsin markedly reduces their ability to bind virus particles, suggesting that binding is mediated via a cell membrane protein. We have investigated the interaction bf human PV type 6b L1 virus-like particles (VLPs) with two epithelial cell lines, CV-1 and HaCaT, which bind VLPs, and a B-cell line (DG75) previously shown not to bind VLPs. Immunoprecipitation of a mixture of PV VLPs with [S-35]methionine-labeled cell extracts and with biotin-labeled cell surface proteins identified four proteins from CV-1 and HaCaT cells of 220, 120, 87, and 35 kDa that reacted with VLPs and were not present in DG75 cells. The alpha(6) beta(4) integrin complex has subunits corresponding to the VLP precipitated proteins, and the tissue distribution of this complex suggested that it was a candidate human PV receptor. Monoclonal antibodies (MAbs) to the alpha(6) or beta(4) integrin subunits precipitated VLPs from a mixture of CV-1 cell proteins and VLPs, whereas MAbs to other integrin subunits did not. An alpha(6) integrin-specific MAb (GoH3) inhibited VLP binding to CV-1 and HaCaT cells, whereas an anti-beta(4) integrin MAb and a range of integrin-specific and other MAbs did not. Furthermore, human laminin, the natural ligand for the alpha(6) beta(4) integrin, was able to block VLP binding. By use of sections of monkey esophagus, the distribution of alpha(6), integrin expression in the basal epithelium was shown to coincide with the distribution of bound VLPs. Taken together, these data suggest that VLPs bind specifically to the alpha(6) integrin subunit and that integrin complexes containing alpha(6) integrin complexed with either beta(1) or beta(4) integrins may act as a receptor for PV binding and entry into epithelial cells.
Resumo:
The products formed by a fructan:fructan fructosyltransferase (FFT) activity purified from Lolium rigidum Gaudin were identified after gas chromatography-mass spectrometry of partially methylated alditol acetates, electrospray ionization-mass spectrometry and reversed-phase high-performance liquid chromatography. The FFT activity synthesized oligofructans up to degree of polymerization (DP) 6, but did not synthesize fructans of DP > 6 even when assayed with (1,1,1)-kestopentaose for up to 10 h. The FFT activity when assayed with 1-kestose or 6(G)-kestose synthesized fructan with fructosyl residues almost exclusively linked by beta-2,1-glycosidic linkages. When assayed with 1-kestose, the FFT activity synthesized tetrasaccharides and pentasaccharides with an internal glucosyl residue. The predominant tetrasaccharide was (1&6(G))-kestotetraose and the predominant pentasaccharide was (1&6(G),1)-kestopentaose. By comparison, tetrasaccharides and pentasaccharides extracted from L. rigidum also contained predominantly beta-2,1-glycosidic linked fructans with an internal glucosyl residue. The only exception was that one of the pentasaccharides contained beta-2,1- and beta-2,6-glycosidic linked fructosyl residues. This pentasaccharide was not synthesized by the FFT activity. The role of this FFT activity in formation of oligofructans in L. rigidum is discussed.