25 resultados para INTESTINAL INFLAMMATION
Resumo:
The marine toxin bistratene A (BisA) potently induces cytostasis and differentiation in a variety of systems. Evidence that BisA is a selective activator of protein kinase C (PKC) delta implicates PKC delta signaling in the negative growth-regulatory effects of this agent. The current study further investigates the signaling pathways activated by BisA by comparing its effects with those of the PKC agonist phorbol 12-myristate 13-acetate (PMA) in the IEC-18 intestinal crypt cell line. Both BisA and PMA induced cell cycle arrest in these cells, albeit with different kinetics. While BisA produced sustained cell cycle arrest in G(o)/G(1) and G(2)/M, the effects of PMA were transient and involved mainly a G(o)/G(1), blockade. BisA also produced apoptosis in a proportion of the population, an effect not seen with PMA. Both agents induced membrane translocation/activation of PKC, with BisA translocating only PKC delta and PMA translocating PKC alpha, delta, and epsilon in these cells. Notably, while depletion of PKC alpha, delta, and epsilon abrogated the cell cycle-specific effects of PMA in IEC-18 cells, the absence of these PKC isozymes failed to inhibit BisA-induced G(o)/G(1), and G(2)/M arrest or apoptosis. The cell cycle inhibitory and apoptotic effects of BisA, therefore, appear to be PKC-independent in IEG-18 cells. On the other hand, BisA and PMA both promoted PKC-dependent activation of Erk 1 and 2 in this system. Thus, intestinal epithelial cells respond to BisA through activation of at least two signaling pathways: a PKC delta -dependent pathway, which leads to activation of mitogen-activated protein kinase and possibly cytostasis in the appropriate context, and a PKC-independent pathway, which induces both cell cycle arrest in G(o)/G(1) and G(2)/M and apoptosis through as yet unknown mechanisms. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
OBJECTIVE: Dendritic cells (DC) are the only antigen-presenting cells that can activate naive T lymphocytes and initiate a primary immune response. They are also thought to have a role in immune tolerance. DC traffic from the blood to peripheral tissue where they become activated. They then present antigen and the costimulating signals necessary to initiate an immune response. In this study, we investigated the number, subsets, and activation pattern of circulating and intestinal DC from patients with clinically mild ulcerative colitis (UC) or Crohn's disease. METHODS: Patients were recruited, if they were not taking immunosuppressive therapy, and were assessed for clinical severity of their disease using for UC, the Clinical Activity Index, and for Crohn's disease, the Crohn's Disease Activity Index. Blood CD11c(+) and CD11c(-) DC subsets, expression of costimulatory antigens, CD86 and CD40, and the early differentiation/activation antigen, CMRF44, were enumerated by multicolor flow cytometry of lineage negative (lin(-) = CD3(-), CD19(-), CD14(-), CD16(-)) HLA-DR+ DC. These data were compared with age-matched healthy and the disease control groups of chronic noninflammatory GI diseases (cGI), acute noninflammatory GI diseases (aGI), and chronic non-GI inflammation (non-GI). In addition, cryostat sections of colonoscopic biopsies from healthy control patients and inflamed versus noninflamed gut mucosa of inflammatory bowel disease (IBD) patients were examined for CD86(+) and CD40(+)lin(-) cells. RESULTS: Twenty-one Crohn's disease and 25 UC patients, with mean Crohn's Disease Activity Index of 98 and Clinical Activity Index of 3.1, and 56 healthy controls, five cGI, five aGI, and six non-GI were studied. CD11c(+) and CD11c(-) DC subsets did not differ significantly between Crohn's, UC, and healthy control groups. Expression of CD86 and CD40 on freshly isolated blood DC from Crohn's patients appeared higher (16.6%, 31%) and was significantly higher in UC (26.6%, 46.3%) versus healthy controls (5.5%, 25%) (p = 0.004, p = 0.012) and non-GI controls (10.2%, 22.8%) (p = 0.012, p = 0.008), but not versus cGI or aGI controls. CD86(+) and CD40(+) DC were also present in inflamed colonic and ileal mucosa from UC and Crohn's patients but not in noninflamed IBD mucosa or normal mucosa. Expression of the CMRF44 antigen was low on freshly isolated DC, but it was upregulated after 24-h culture on DC from all groups, although significantly less so on DC from UC versus Crohn's or healthy controls (p = 0.024). The CMRF44(+) antigen was mainly associated with CD11c(+) DC, and in UC was inversely related to the Clinical Activity Index (r = -0.69, p = 0.0002). CONCLUSIONS: There is upregulation of costimulatory molecules on blood DC even in very mild IBD but surprisingly, there is divergent expression of the differentiation/activation CMRF44 antigen. Upregulation of costimulatory molecules and divergent expression of CMRF44 in blood DC was also apparent in cGI and aGI but not in non-GI or healthy controls, whereas intestinal CD86(+) and CD40(+) DC were found only in inflamed mucosa from IBD patients. Persistent or distorted activation of blood DC or divergent regulation of costimulatory and activation antigens may have important implications for gut mucosal immunity and inflammation. (Am J Gastroenterol 2001;96:2946-2956. (C) 2001 by Am. Coll. of Gastroenterology).
The relative importance of luninal and systemic signals in the control of intestinal iron absorption
Resumo:
Differentiated dendritic cells (DC) have been identified by the presence of nuclear RelB (nRelB) and HLA-DR, and the absence of CD20 or high levels of CD68, in lymph nodes and active rheumatoid arthritis synovial tissue. The current studies aimed to identify conditions in which nRelB is expressed in human tissues, by single and double immunohistochemistry of formalin-fixed peripheral and lymphoid tissue. Normal peripheral tissue did not contain nRelB(+) cells. nRelB(+) DC were located only in T- or B-cell areas of lymphoid tissue associated with normal organs or peripheral tissues, including tonsil, colon, spleen and thymus, or in association with T cells in inflamed peripheral tissue. Inflamed sites included skin delayed-type hypersensitivity reaction, and a wide range of tissues affected by autoimmune disease. Nuclear RelB(+) -HLA-DR- follicular DC were located in B-cell follicles in lymphoid organs and in lymphoid-like follicles of some tissues affected by autoimmune disease. Lymphoid tissue T-cell areas also contained nRelB(-) -HLA-DR+ cells, some of which expressed CD123 and/or CD68. Nuclear RelB(+) cells are found in normal lymphoid organs and in peripheral tissue in the context of inflammation, but not under normal resting conditions.
Resumo:
The effect of dietary vitamin E on immunoglobulin A (IgA) antibody production, which acts as the first line of defence at the intestinal mucosa, has not been evaluated in chickens. In the present study the impact of the inclusion of supplementary levels of vitamin E to the diet, on total and antigen-specific IgA antibody titres, T-cell subsets and Ia+ cells, was assessed. From hatching, chickens received a maize-based diet which was supplemented with either 25, 250, 2500 or 5000 mg dl-alpha-tocopherol acetate/kg. Primary immunisation with tetanus toxoid (T. toxoid) emulsified in a vegetable oil-in-water adjuvant was administered by the intraperitoneal route at 21 d of age. At 35 d of age all birds received an oral booster vaccination of T. toxoid. Significantly higher total IgA antibody titres were present in the day 42 intestinal scrapings of birds receiving the 5000 mg/kg vitamin E-supplemented diet (VESD) (P=0.05) and a notable increase was observed in birds receiving the 250 mg/kg VESD (P=0.06). At days 21 and 42 total serum IgA antibody titres of birds receiving the 250 mg/kg VESD was significantly higher (P
Resumo:
Clinical trials showing the benefits of reducing the effects of TNF-alpha in rheumatoid arthritis have highlighted the key role of the cytokine TNF-alpha in this inflammatory condition. A new approach to reducing the effects of TNF-alpha is to decrease its synthesis by inhibiting TNF-alpha converting enzyme with GW3333. In rat models of arthritis, GW3333 has some beneficial effects. Further longer-term studies of GW3333 in animal models are required to determine whether its benefit is maintained. TACE inhibition may represent a new approach to treating inflammation.
Resumo:
Mast cells are mobile granule-containing secretory cells that are distributed preferentially about the microvascular endothelium in oral mucosa and dental pulp. The enzyme profile of mast cells in oral tissues resembles that of skin, with most mast cells expressing the serine proteases tryptase and chymase. Mast cells in oral tissues contain the pro-inflammatory cytokine tumour necrosis factor-alpha in their granules, and release of this promotes leukocyte infiltration during evolving inflammation in several conditions, including lichen planus, gingivitis, pulpitis, and periapical inflammation, through induction of endothelial-leukocyte adhesion molecules. Mast cell synthesis and release of other mediators exerts potent immunoregulatory effects on other cell types, while several T-lymphocyte-derived cytokines influence mast cell migration and mediator release. Mast cell proteases may contribute to alterations in basement membranes in inflammation in the oral cavity, such as the disruptions that allow cytotoxic lymphocytes to enter the epithelium in oral lichen planus. A close relationship exists among mast cells, neural elements, and laminin, and this explains the preferential distribution of mast cells in tissues. Mast cells are responsive to neuropeptides and, through their interaction with neural elements, form a neural immune network with Langerhans cells in mucosal tissues. This facilitates mast cell degranulation in response to a range of immunological and non-immunological stimuli. Because mast cells play a pivotal role in inflammation, therapies that target mast cell functions could have value in the treatment of chronic inflammatory disorders in the oral cavity.
Resumo:
Background: The heavy usage of coxibs in Australia far outstrips the predicted usage that was based on the treatment of patients with risk factors for upper gastro-intestinal adverse events from conventional anti--inflammatory agents. This raises questions regarding the appropriateness of prescribing. Aims: To determine: (i) the relationship between prescriptions for cyclooxygenase 2 (COX-2) inhibitors and objective evidence of inflammatory arthritis, (ii) prior experience with paracetamol and/or conventional non-steroidal anti-inflammatory drugs (NSAIDs), and (iii) contraindications to the use of NSAIDs. Methods: Drug utilization evaluation and rheumato-logical assessment was conducted on 70 consecutive patients admitted on COX-2 inhibitors to a 480-bed metropolitan hospital. The main outcome measures were: the indication for COX-2 inhibitor; objective -evidence of inflammatory arthritis; previous trial of -paracetamol or conventional NSAIDs; and patient -satisfaction. Results: Only 11 patients (16%) had symptoms or signs of an inflammatory arthropathy, and met Pharmaceut-ical Benefits Schedule criteria for prescribing a COX-2 inhibitor. Fifty-nine patients (84%) had chronic osteo-arthritis, degenerative spinal disease, injury or malignancy, without overt active inflammation. Fourteen patients (20%) had trialled regular paracetamol prior to using any NSAID treatment. Conventional NSAIDs had been previously used by 51 patients (73%). Eleven patients (16%) reported previous adverse gastrointestinal effects from conventional NSAIDs. On the basis of significant renal impairment (creatinine clearance 5/10). Conclusions: Drug utilization data indicate that COX-2 inhibitors are frequently used first line for degenerative osteoarthritis in the absence of overt inflammation, without prior adequate trial of paracetamol and with disregard for the cautions and contraindications of these agents. These findings may explain the unprecedented Pharmaceutical Benefits Schedule expenditure on COX-2 inhibitors in Australia.