41 resultados para INDUCED LETHAL DISEASE
Resumo:
The plant hormones abscisic acid (ABA), jasmonic acid (JA), and ethylene are involved in diverse plant processes, including the regulation of gene expression during adaptive responses to abiotic and biotic stresses. Previously, ABA has been implicated in enhancing disease susceptibility in various plant species, but currently very little is known about the molecular mechanisms underlying this phenomenon. In this study, we obtained evidence that a complex interplay between ABA and JA-ethylene signaling pathways regulate plant defense gene expression and disease resistance. First, we showed that exogenous ABA suppressed both basal and JA-ethylene-activated transcription from defense genes. By contrast, ABA deficiency as conditioned by the mutations in the ABA1 and ABA2 genes, which encode enzymes involved in ABA biosynthesis, resulted in upregulation of basal and induced transcription from JA-ethylene responsive defense genes. Second, we found that disruption of AtMYC2 (allelic to JASMONATE INSENSITIVE1 [JIN1]), encoding a basic helix-loop-helix Leu zipper transcription factor, which is a positive regulator of ABA signaling, results in elevated levels of basal and activated transcription from JA-ethylene responsive defense genes. Furthermore, the jin1/myc2 and aba2-1 mutants showed increased resistance to the necrotrophic fungal pathogen Fusarium oxysporum. Finally, using ethylene and ABA signaling mutants, we showed that interaction between ABA and ethylene signaling is mutually antagonistic in vegetative tissues. Collectively, our results indicate that the antagonistic interactions between multiple components of ABA and the JA-ethylene signaling pathways modulate defense and stress responsive gene expression in response to biotic and abiotic stresses.
Resumo:
Previous work had shown that the ratio of NMDA receptor NR1 subunit mRNA transcripts containing an N-terminal splice cassette to those that do not is markedly lower in regions of the Alzheimer's disease (AD) brain that are susceptible to pathological damage, compared with spared regions in the same cases or homotropic regions in controls. To elucidate the origins of this difference in proportionate expression, we measured the absolute levels of each of the eight NR1 transcripts by quantitative internally standardized RT-PCR assay. Expression of transcripts with the cassette was strongly attenuated in susceptible regions of Alzheimer's brain, whereas expression of non-cassette transcripts differed little from that in controls. The expression of other NR1 splice variants was not associated with pathology relevant to disease status, although some combinations of splice cassettes were well maintained in AD cases. The population profile of NR1 transcripts in occipital cortex differed from the profiles in other brain regions studied. Western analysis confirmed that the expression of protein isoforms containing the N-terminal peptide was very low in susceptible areas of the Alzheimer's brain. Cells that express NR1 subunits with the N-terminal cassette may be selectively vulnerable to toxicity in AD.
Resumo:
Alzheimer's disease (AD) is the most common form of dementia, accounting for 60-70% of cases in subjects over 65 years of age. Several postulates have been put forward that relate AD neuropathology to intellectual and functional impairment. These range from free-radical-induced damage, through cholinergic dysfunction, to beta-amyloid-induced toxicity. However, therapeutic strategies aimed at improving the cognitive symptoms of patients via choline supplementation, cholinergic stimulation or beta-amyloid vaccination, have largely failed. A growing body of evidence suggests that perturbations in systems using the excitatory amino acid L-glutamate (L-Glu) may underlie the pathogenic mechanisms of (e.g.) hypoxia-ischemia, epilepsy, and chronic neurodegenerative disorders such as Huntington's disease and AD. Almost all neurons in the CNS carry the N-methyl-D-aspartate (NMDA) subtype of ionotropic L-glutamate receptors, which can mediate post-synaptic Ca2+ influx. Excitotoxicity resulting from excessive activation of NMDA receptors may enhance the localized vulnerability of neurons in a manner consistent with AD neuropathology, as a consequence of an altered regional distribution of NMDA receptor subtypes. This review discusses mechanisms for the involvement of the NMDA receptor complex and its interaction with polyamines in the pathogenesis of AD. NMDA receptor antagonists have potential for the therapeutic amelioration of AD. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Tannerella forsythia has been implicated as a defined periodontal pathogen. In the present study a mouse model was used to determine the phenotype of leukocytes in the lesions induced by subcutaneous injections of either live (group A) or nonviable (group B) T. forsythia. Control mice (group C) received the vehicle only. Lesions were excised at days 1, 2, 4, and 7. An avidin-biotin immunoperoxidase method was used to stain infiltrating CD4(+) and CD8(+) T cells, CD14(+) macrophages, CD19(+) B cells, and neutrophils. Hematoxylin and eosin sections demonstrated lesions with central necrotic cores surrounded by neutrophils, macrophages and lymphocytes in both group A and group B mice. Lesions from control mice exhibited no or only occasional solitary leukocytes. In both groups A and B, neutrophils were the dominant leukocyte in the lesion 1 day after injection, the numbers decreasing over the 7-day experimental period. There was a relatively low mean percent of CD4(+) and CD8(+) T cells in the lesions and, whereas the percent of CD8(+) T cells remained constant, there was a significant increase in the percent of CD4(+) T cells at day 7. This increase was more evident in group A mice. The mean percent of CD14(+) macrophages and CD19(+) B cells remained low over the experimental period, although there was a significantly higher mean percent of CD19(+) B cells at day 1. In conclusion, the results showed that immunization of mice with live T. forsythia induced a stronger immune response than nonviable organisms. The inflammatory response presented as a nonspecific immune response with evidence of an adaptive (T-cell) response by day 7. Unlike Porphyromonas gingivalis, there was no inhibition of neutrophil migration.
Resumo:
The authors evaluated the efficacy of cholinergic drugs in the treatment of neuroleptic-induced tardive dyskinesia (TD) by a systematic review of the literature on the following agents: choline, lecithin, physostigmine, tacrine, 7-methoxyacridine, ipidacrine, galantamine, donepezil, rivastigmine, eptastigmine, metrifonate, arecoline, RS 86, xanomeline, cevimeline, deanol, and meclofenoxate. All relevant randomized controlled trials, without any language or year limitations, were obtained from the Cochrane Schizophrenia Group's Register of Trials. Trials were classified according to their methodological quality. For binary and continuous data, relative risks (RR) and weighted or standardized mean differences (SMD) were calculated, respectively. Eleven trials with a total of 261 randomized patients were included in the meta-analysis. Cholinergic drugs showed a minor trend for improvement of tardive dyskinesia symptoms, but results were not statistically significant (RR 0.84, 95% confidence interval (CI) 0.68 to 1.04, p=0.11). Despite an extensive search of the literature, eligible data for the meta-analysis were few and no results reached statistical significance. In conclusion, we found no evidence to support administration of the old cholinergic agents lecithin, deanol, and meclofenoxate to patients with tardive dyskinesia. In addition, two trials were found on novel cholinergic Alzheimer drugs in tardive dyskinesia, one of which was ongoing. Further investigation of the clinical effects of novel cholinergic agents in tardive dyskinesia is warranted. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
The poor response to immunotherapy in patients with multiple myeloma (MM) indicates that a better understanding of any defects in the immune response in these patients is required before effective therapeutic strategies can be developed. Recently we reported that high potency (CMRF44(+)) dendritic cells (DC) in the peripheral blood of patients with MM failed to significantly up-regulate the expression of the B7 co-stimulatory molecules, CD80 and CD86, in response to an appropriate signal from soluble trimeric human CD40 ligand. This defect was caused by transforming growth factor beta(1) (TGFbeta(1)) and interleukin (IL)-10, produced by malignant plasma cells, and the defect was neutralized in vitro with anti-TGFbeta(1). As this defect could impact on immunotherapeutic strategies and may be a major cause of the failure of recent trials, it was important to identify a more clinically useful agent that could correct the defect in vivo. In this study of 59 MM patients, the relative and absolute numbers of blood DC were only significantly decreased in patients with stage III disease and CD80 up-regulation was reduced in both stage I and stage III. It was demonstrated that both IL-12 and interferon-gamma neutralized the failure to stimulate CD80 up-regulation by huCD40LT in vitro. IL-12 did not cause a change in the distribution of DC subsets that were predominantly myeloid (CD11c+ and CDw123-) suggesting that there would be a predominantly T-helper cell type response. The addition of IL-12 or interferon-gamma to future immunotherapy trials involving these patients should be considered.
Resumo:
Aims/hypothesis: Subclinical left ventricular (LV) dysfunction has been shown by tissue Doppler and strain imaging in diabetic patients in the absence of coronary disease or LV hypertrophy, but the prevalence and aetiology of this finding remain unclear. This study sought to identify the prevalence and the determinants of subclinical diabetic heart disease. Methods: A group of 219 unselected patients with type 2 diabetes without known cardiac disease underwent resting and stress echocardiography. After exclusion of coronary artery disease or LV hypertrophy, the remaining 120 patients ( age 57 +/- 10 years, 73 male) were studied with tissue Doppler imaging. Peak systolic strain of each wall and systolic (Sm) and diastolic ( Em) velocity of each basal segment were measured from the three apical views and averaged for each patient. Significant subclinical LV dysfunction was identified according to Sm and Em normal ranges adjusted by age and sex. Strain and Em were correlated with clinical, therapeutic, echocardiographic and biochemical variables, and significant independent associations were sought using a multiple linear regressionmodel. Results: Significant subclinical LV dysfunction was present in 27% diabetic patients. Myocardial systolic dysfunction by peak strain was independently associated with glycosylated haemoglobin level ( p< 0.001) and lack of angiotensin- converting enzyme inhibitor treatment ( p= 0.003). Myocardial diastolic function ( Em) was independently predicted by age ( p= 0.013), hypertension ( p= 0.001), insulin ( p= 0.008) and metformin ( p= 0.01) treatment. Conclusions/ interpretation: In patients with diabetes mellitus, subclinical LV dysfunction is common and associated with poor diabetic control, advancing age, hypertension and metformin treatment; ACE inhibitor and insulin therapies appear to be protective.
Resumo:
Background The prevalence of left ventricular hypertrophy (LVH), coronary artery disease, and subclinical cardiomyopathy in diabetic patients without known cardiac disease is unclear. We sought the frequency of these findings to determine whether plasma brain natriuretic peptide (BNP) could be used as an alternative screening tool to identify subclinical LV dysfunction. Methods Asymptomatic patients with diabetes mellitus without known cardiac disease (n = 10 1) underwent clinical evaluation, measurement of BNP, exercise stress testing, and detailed echocardiographic assessment. After exclusion of overt dysfunction or ischemia, subclinical myocardial function was sought on the basis of myocardial systolic (Sm) and diastolic velocity (Em). Association was. sought between subclinical dysfunction and clinical, biochemical, exercise, and echocardiographic variables. Results Of 101 patients, 22 had LVH and 16 had ischemia evidenced by exercise-induced wall motion abnormalities. Only 4 patients had abnormal BNP levels; BNP was significantly increased in patients with LVH. After exclusion of LVH and coronary artery disease, subclinical cardiomyopathy was identified in 24 of 66 patients: Subclinical disease could not be predicted by BNP. Conclusions Even after exclusion of asymptomatic ischemia and hypertrophy, subclinical systolic and diastolic dysfunction occurs in a significant number of patients with type 2 diabetes. However, screening approaches, including BNP, do not appear to be sufficiently sensitive to identify subclinical dysfunction, which requires sophisticated echocardiographic analysis.
Resumo:
To identify transcription factors (TFs) involved in jasmonate (JA) signaling and plant defense, we screened 1,534 Arabidopsis (Arabidopsis thaliana) TFs by real-time quantitative reverse transcription-PCR for their altered transcript at 6 h following either methyl JA treatment or inoculation with the incompatible pathogen Alternaria brassicicola. We identified 134 TFs that showed a significant change in expression, including many APETALA2/ethylene response factor (AP2/ERF), MYB, WRKY, and NACTF genes with unknown functions. Twenty TF genes were induced by both the pathogen and methyl JA and these included 10 members of the AP2/ERF TF family, primarily from the B1a and B3 subclusters. Functional analysis of the B1a TF AtERF4 revealed that AtERF4 acts as a novel negative regulator of JA-responsive defense gene expression and resistance to the necrotrophic fungal pathogen Fusarium oxysporum and antagonizes JA inhibition of root elongation. In contrast, functional analysis of the B3 TF AtERF2 showed that AtERF2 is a positive regulator of JA-responsive defense genes and resistance to F. oxysporum and enhances JA inhibition of root elongation. Our results suggest that plants coordinately express multiple repressor-and activator-type AP2/ERFs during pathogen challenge to modulate defense gene expression and disease resistance.
Resumo:
At autopsy, Alzheimer's disease is characterised by the presence of amyloid plaques and neurofibrillary tangles, made up of two peptide sequences, amyloid-beta(1-40) (A beta 40) and amyloid-beta(1-42) (A beta 42). In Tyrode's solution (2 mM Ca2+), 10 mu M A beta 42 peptide almost immediately aggregates and eventually forms p-sheets. This aggregation can be inhibited with 4,5-dianilinophthalimide (DAPH). Ca2+-permeant AMPA receptors are involved in the neuronal Ca2+ influx (neurotoxicity) induced by the A beta 42 peptide in cultured neuronal cells. The Ca2+ influx observed with pre-incubated A beta 42 peptide was inhibited by DAPH. DAPH also inhibits epidermal growth factor receptor kinase, and this will prevent its development for use in Alzheimer's disease. The potential of DAPH as a small-molecule lead compound for the treatment of Alzheimer's disease next requires the separation of the structural requirements that reverse fibril formation and inhibit epidermal growth factor receptor kinase.
Resumo:
Cyclosporine A-treated transplant recipients develop pronounced cardiovascular disease and have increased oxidative stress and altered antioxidant capacity in erythrocytes and plasma. These experiments investigated the time-course of cyclosporine A-induced changes to redox balance in plasma and erythrocytes. Rats were randomly assigned to either a control or cyclosporine A-treated group. Treatment animals received 25 mg/kg of cyclosporine A via intraperitoneal injection for either 7 days or a single dose. Control rats were injected with the same volume of the vehicle. Three hours after the final injections, plasma was analysed for total antioxidant status, a-tocopherol, malondialdehyde, and creatinine. Erythrocytes were analysed for reduced glutathione (GSH), alpha-tocopherol, methaemoglobin, malondialdehyde, and the activities of superoxide dismutase, catalase, GSH peroxidase, and glucose-6-phosphate dehydrogenase (G6PD). Cyclosporine A administration for 7 days resulted in a significant increase (P < 0.05) in plasma malondialdehyde, methaemoglobin, and superoxide dismutase and catalase activities. There was a significant decrease (P < 0.05) in erythrocyte GSH concentration and G6PD activity in cyclosporine A animals. There were no significant differences (P > 0.05) between groups following a single dose of cyclosporine A in any of the measures. In summary, cyclosporine A alters erythrocyte redox balance after 7 days administration, but not after a single dose.
Resumo:
We have previously shown that complement factor 5a(C5a) plays a role in the pathogenesis of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in rats by using the selective, orally active C5a antagonist AcF-[OP(D-Cha) WR]. This study tested the efficacy and potency of a new C5a antagonist, hydrocinnamate (HC)-[OP(D-Cha) WR], which has limited intestinal lumenal metabolism, in this model of colitis. Analogs of AcF-[OP(D-Cha) WR] were examined for their susceptibility to alimentary metabolism in the rat using intestinal mucosal washings. One metabolically stable analog, HC-[OP(D-Cha)WR], was then evaluated pharmacokinetically and investigated at a range of doses (0.03 - 10 mg/kg/ day p.o.) in the 8-day rat TNBS- colitis model, against the comparator drug AcF-[OP(D-Cha) WR]. Using various amino acid substitutions, it was determined that the AcF moiety of AcF-[OP(D-Cha) WR] was responsible for the metabolic instability of the compound in intestinal mucosal washings. The analog HC-[OP( D-Cha) WR], equiactive in vitro to AcF-[OP(D-Cha) WR], was resistant to intestinal metabolism, but it displayed similar oral bioavailability to AcF-[OP(D-Cha) WR]. However, in the rat TNBS- colitis model, HC-[OP(D-Cha) WR] was effective at reducing mortality, colon edema, colon macroscopic scores, and increasing food consumption and body weights, at 10- to 30- fold lower oral doses than AcF-[OP( D-Cha) WR]. These studies suggest that resistance to intestinal metabolism by HC-[OP(D-Cha) WR] may result in increased local concentrations of the drug in the colon, thus affording efficacy with markedly lower oral doses than AcF-[OP(D-Cha) WR] against TNBS-colitis. This large increase in potency and high efficacy of this compound makes it a potential candidate for clinical development against intestinal diseases such as inflammatory bowel disease.
Resumo:
Organ transplant recipients develop pronounced cardiovascular disease, and decreased antioxidant capacity in plasma and erythrocytes is associated with the pathogenesis of this disease. These experiments tested the hypothesis that the immunosuppressant cyclosporine A (CsA) alters erythrocyte redox balance and reduces plasma antioxidant capacity. Female Sprague-Dawley rats were randomly assigned to a control or CsA treated group. Treatment animals received 25 mg/kg/day of CsA via intraperitoneal injection for 18 days. Control rats were injected with the same volume of the vehicle. Three hours after the final CsA injection, rats were exsanguinated and plasma analysed for total antioxidant status (TAS), alpha-tocopherol, malondialdehyde (MDA), and creatinine. Erythrocytes were analysed for superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and glucose-6-phosphate dehydrogenase (G6PD) activities, alpha-tocopherol, and MDA. CsA administration resulted in a significant (P < 0.05) decrease in plasma TAS and significant increases (P < 0.05) in plasma creatinine and MDA. Erythrocyte CAT was significantly (P < 0.05) increased in CsA treated rats compared to controls. There were no significant differences (P > 0.05) in erythrocyte SOD, GPX, G6PD, alpha-tocopherol or MDA between groups. In summary, CsA alters erythrocyte antioxidant defence and decreases plasma total antioxidant capacity.