33 resultados para Hyperbolic Equation
Resumo:
The generalized secant hyperbolic distribution (GSHD) proposed in Vaughan (2002) includes a wide range of unimodal symmetric distributions, with the Cauchy and uniform distributions being the limiting cases, and the logistic and hyperbolic secant distributions being special cases. The current article derives an asymptotically efficient rank estimator of the location parameter of the GSHD and suggests the corresponding one- and two-sample optimal rank tests. The rank estimator derived is compared to the modified MLE of location proposed in Vaughan (2002). By combining these two estimators, a computationally attractive method for constructing an exact confidence interval of the location parameter is developed. The statistical procedures introduced in the current article are illustrated by examples.
Resumo:
A primary purpose of this research is to design a gradient coil that is planar in construction and can be inserted within existing infrastructure. The proposed wave equation method for the design of gradient coils is novel within the field. it is comprehensively shown how this method can be used to design the planar x-, y-, and z-gradient wire windings to produce the required magnetic fields within a certain domain. The solution for the cylindrical gradient coil set is also elucidated. The wave equation technique is compared with the well-known target held method to gauge the quality of resultant design. In the case of the planar gradient coil design, it is shown that using the new method, a set of compact gradient coils with large field of view can be produced. The final design is considerably smaller in dimension when compared with the design obtained using the target field method, and therefore the manufacturing costs and materials required are somewhat reduced.
Resumo:
We consider a type of quantum electromechanical system, known as the shuttle system, first proposed by Gorelik [Phys. Rev. Lett. 80, 4526 (1998)]. We use a quantum master equation treatment and compare the semiclassical solution to a full quantum simulation to reveal the dynamics, followed by a discussion of the current noise of the system. The transition between tunneling and shuttling regime can be measured directly in the spectrum of the noise. (c) 2006 American Institute of Physics.
Resumo:
We present a theory for a superfluid Fermi gas near the BCS-BEC crossover, including pairing fluctuation contributions to the free energy similar to that considered by Nozieres and Schmitt-Rink for the normal phase. In the strong coupling limit, our theory is able to recover the Bogoliubov theory of a weakly interacting Bose gas with a molecular scattering length very close to the known exact result. We compare our results with recent Quantum Monte Carlo simulations both for the ground state and at finite temperature. Excellent agreement is found for all interaction strengths where simulation results are available.
Resumo:
We introduce a general Hamiltonian describing coherent superpositions of Cooper pairs and condensed molecular bosons. For particular choices of the coupling parameters, the model is integrable. One integrable manifold, as well as the Bethe ansatz solution, was found by Dukelsky et al. [J. Dukelsky, G.G. Dussel, C. Esebbag, S. Pittel, Phys. Rev. Lett. 93 (2004) 050403]. Here we show that there is a second integrable manifold, established using the boundary quantum inverse scattering method. In this manner we obtain the exact solution by means of the algebraic Bethe ansatz. In the case where the Cooper pair energies are degenerate we examine the relationship between the spectrum of these integrable Hamiltonians and the quasi-exactly solvable spectrum of particular Schrodinger operators. For the solution we derive here the potential of the Schrodinger operator is given in terms of hyperbolic functions. For the solution derived by Dukelsky et al., loc. cit. the potential is sextic and the wavefunctions obey PT-symmetric boundary conditions. This latter case provides a novel example of an integrable Hermitian Hamiltonian acting on a Fock space whose states map into a Hilbert space of PE-symmetric wavefunctions defined on a contour in the complex plane. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The Perk-Schultz model may be expressed in terms of the solution of the Yang-Baxter equation associated with the fundamental representation of the untwisted affine extension of the general linear quantum superalgebra U-q (gl(m/n)], with a multiparametric coproduct action as given by Reshetikhin. Here, we present analogous explicit expressions for solutions of the Yang-Baxter equation associated with the fundamental representations of the twisted and untwisted affine extensions of the orthosymplectic quantum superalgebras U-q[osp(m/n)]. In this manner, we obtain generalizations of the Perk-Schultz model.
Resumo:
Studies have shown that an increase in arterial stiffening can indicate the presence of cardiovascular diseases like hypertension. Current gold standard in clinical practice is by measuring the blood pressure of patients using a mercury sphygmomanometer. However, the nature of this technique is not suitable for prolonged monitoring. It has been established that pulse wave velocity is a direct measure of arterial stiffening. However, its usefulness is hampered by the absence of techniques to estimate it non-invasively. Pulse transit time (PTT) is a simple and non-intrusive method derived from pulse wave velocity. It has shown its capability in childhood respiratory sleep studies. Recently, regression equations that can predict PTT values for healthy Caucasian children were formulated. However, its usefulness to identify hypertensive children based on mean PTT values has not been investigated. This was a continual study where 3 more Caucasian male children with known clinical hypertension were recruited. Results indicated that the PTT predictive equations are able to identify hypertensive children from their normal counterparts in a significant manner (p < 0.05). Hence, PTT can be a useful diagnostic tool in identifying hypertension in children and shows potential to be a non-invasive continual monitor for arterial stiffening.