44 resultados para Hybrid genome
Resumo:
In this paper we analyze a hybrid auction that combines a first-price and a Vickrey auction. We show that this auction may generate more expected revenue than a standard first-price auction. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
An analysis of the relationships of the major arthropod groups Was undertaken using mitochondrial genome data to examine the hypotheses that Hexapoda is polyphyletic and that Collembola is more closely related to branchiopod crustaceans than insects. We sought to examine the sensitivity of this relationship to outgroup choice, data treatment. gene choice and optimality criteria used in the phylogenetic analysis of mitochondrial genome data. Additionally we sequenced the mitochondrial genome of ail archaeognathan, Nesomachilis australica. to improve taxon selection in the apterygote insects, a group poorly represented in previous mitochondrial phylogenies. The sister group of the Collembola was rarely resolved in our analyses with a significant level of support. The use of different outgroups (myriapods, nematodes, or annelids + mollusks) resulted in many different placements of Collembola. The way in which the dataset was coded for analysis (DNA, DNA with the exclusion of third codon position and as amino acids) also had marked affects on tree topology. We found that nodal Support was spread evenly throughout the 13 mitochondrial genes and the exclusion of genes resulted in significantly less resolution in the inferred trees. Optimality criteria had a much lesser effect on topology than the preceding factors; parsimony and Bayesian trees for a given data set and treatment were quite similar. We therefore conclude that the relationships of the extant arthropod groups as inferred by mitochondrial genomes are highly vulnerable to outgroup choice, data treatment and gene choice, and no consistent alternative hypothesis of Collembola's relationships is supported. Pending the resolution of these identified problems with the application of mitogenomic data to basal arthropod relationships, it is difficult to justify the rejection of hexapod monophyly, which is well supported on morphological grounds. (c) The Willi Hennig Society 2004.
Resumo:
We describe here two new transposable elements, CemaT4 and CemaT5, that were identified within the sequenced genome of Caenorhabditis elegans using homology based searches. Five variants of CemaT4 were found, all non-autonomous and sharing 26 bp inverted terminal repeats (ITRs) and segments (152-367 bp) of sequence with similarity to the CemaT1 transposon of C. elegans. Sixteen copies of a short, 30 bp repetitive sequence, comprised entirely of an inverted repeat of the first 15 bp of CemaT4's ITR, were also found, each flanked by TA dinucleotide duplications, which are hallmarks of target site duplications of mariner-Tc transposon transpositions. The CemaT5 transposable element had no similarity to maT elements, except for sharing identical ITR sequences with CemaT3. We provide evidence that CemaT5 and CemaT3 are capable of excising from the C. elegans genome, despite neither transposon being capable of encoding a functional transposase enzyme. Presumably, these two transposons are cross-mobilised by an autonomous transposon that recognises their shared ITRs. The excisions of these and other non-autonomous elements may provide opportunities for abortive gap repair to create internal deletions and/or insert novel sequence within these transposons. The influence of non-autonomous element mobility and structural diversity on genome variation is discussed.
Resumo:
All Tn5 insertion mutants of Xanthomonas albilineans, the cause of leaf scald disease of sugar cane, which failed to produce albicidin antibiotics failed to cause chlorosis in inoculated sugar cane but- remained resistant to albicidin. Southern analysis revealed that mutants deficient in albicidin production carried the transposon on different chromosomal restriction fragments spanning at least: 50 kb in the X. albilineans genome, which is larger than any reported cluster of genes involved in the production of a bacterial phytotoxin. Albicidin-resistant cosmid clones from a Tox(-) Tn5 insertion mutant did not carry the transposon, and the subcloned albicidin resistance gene did not hybridize to any of the restriction fragments carrying Tn5 in the Tox(-) mutants, indicating that the albicidin biosynthesis and resistance genes are not closely linked in X. albilineans.
Resumo:
We compared the aldosterone-producing potency of the angiotensin II-sensitive wild-type aldosterone synthase genes and the ACTH-sensitive hybrid 11 beta-hydroxylase/aldosterone synthase gene by examining aldosterone, PRA, and cortisol day-curves (2-hourly levels over 24 h) in patients with familial hyperaldosteronism type I, before and during long-term (0.8-13.5 yr) glucocorticoid treatment. In 8 untreated patients, PRA levels were usually suppressed, and aldosterone correlated strongly with cortisol (r = 0.69-0.99). Fourteen studies were performed on 10 patients receiving glucocorticoid treatment that corrected hypertension, hypokalemia, and PRA suppression in all. ACTH was markedly and continuously suppressed in 6 studies, 3 of which demonstrated strong correlations between aldosterone and PRA (r = 0.77-0.92), ACTH was only partially suppressed in the remaining 8 studies; aldosterone correlated strongly: 1) with cortisol alone in 5 (r = 0.71-0.98); 2) with cortisol (r = 0.90) and PRA (r = 0.74) in one; 3) with PRA only in one (r = 0.80); and 4) with neither PRA nor cortisol in one. Unless ACTH is markedly and continuously suppressed, aldosterone is more responsive to ACTH than to renin/angiotensin II, despite the latter being unsuppressed. This is consistent with the hybrid gene being more powerfully expressed than the wild-type aldosterone synthase genes in familial hyperaldosteronism type I.
Resumo:
The complete arrangement of genes in the mitochondrial (mt) genome is known for 12 species of insects, and part of the gene arrangement in the mt genome is known for over 300 other species of insects. The arrangement of genes in the mt genome is very conserved in insects studied, since all of the protein-coding and rRNA genes and most of the tRNA genes are arranged in the same way. We sequenced the entire mt genome of the wallaby louse, Heterodoxus macropus, which is 14,670 bp long and has the 37 genes typical of animals and some noncoding regions. The largest noncoding region is 73 bp long (93% A+T), and the second largest is 47 bp long (92% AST). Both of these noncoding regions seem to be able to form stem-loop structures. The arrangement of genes in the mt genome of this louse is unlike that of any other animal studied. All tRNA genes have moved and/or inverted relative to the ancestral gene arrangement of insects, which is present in the fruit fly Drosophila yakuba. At least nine protein-coding genes (atp6, atp8, cox2, cob, nad1-nad3, nad5, and nad6) have moved; moreover, four of these genes (atp6, atp8, nad1, and nad3) have inverted. The large number of gene rearrangements in the mt genome of H. macropus is unprecedented for an arthropod.
Resumo:
1. Improved approaches to screening and diagnosis have revealed primary aldosteronism (PAL) to be much more common than previously thought, with most patients normokalaemic. The spectrum of this disorder has been further broadened by the study of familial varieties. 2. Familial hyperaldosteronism type I (FH-I) is a glucocorticoid-remediable form of PAL caused by the inheritance of an adrenocorticotrophic hormone (ACTH)- regulated, hybrid CYP11B1/CYP11B2 gene. Diagnosis has been greatly facilitated by the advent of genetic testing. The severity of hypertension varies widely in FH-I, even among members of the same family, and has demonstrated relationships with gender, degree of biochemical disturbance and hybrid gene crossover point position. Hormone day curve studies show that the hybrid gene dominates over wild-type CYP11B2 in terms of aldosterone regulation. This may be due, in part, to a defect in wild-type CYP11B2-induced aldosterone production. Control of hypertension in FH-I requires only partial suppression of ACTH and much smaller glucocorticoid doses than previously recommended. 3. Familial hyperaldosteronism type II (FH-II) is not glucocorticoid remediable and is not associated with the hybrid gene mutation. Familial hyperaldosteronism type II is clinically, biochemically and morphologically indistinguishable from apparently non-familial PAL. Linkage studies in one informative family did not show segregation of FH-II with the CYP11B2, AT1 or MEN1 genes, but a genome-wide search has revealed linkage with a locus in chromosome 7. As has already occurred in FH-I, elucidation of causative mutations is likely to facilitate earlier detection of PAL.
Resumo:
Primary aldosteronism (PAL) may be as much as ten times more common than has been traditionally thought, with most patients normokalemic. The study of familial varieties has facilitated a fuller appreciation of the nature and diversity of its clinical, biochemical, morphological and molecular aspects. In familial hyperaldosteronism type I (FH-I), glucocorticoid-remediable PAL is caused by inheritance of an ACTH-regulated, hybrid CYP11B1/CYP11B2 gene. Genetic testing has greatly facilitated diagnosis. Hypertension severity varies widely, demonstrating relationships with gender, affected parent's gender, urinary kallikrein level, degree of biochemical disturbance and hybrid gene crossover point position. Analyses of aldosterone/PRA/cortisol 'day-curves' have revealed that (1) the hybrid gene dominates over wild type CYP11B2 in terms of aldosterone regulation and (2) correction of hypertension in FH-I requires only partial suppression of ACTH, and much smaller glucocorticoid doses than those previously recommended. Familial hyperaldosteronism type II is not glucocorticoid-remediable, and is clinically, biochemically and morphologically indistinguishable from apparently sporadic PAL. In one informative family available for linkage analysis, FH-II does not segregate with either the CYP11B2, AT1 or MEN1 genes, but a genome-wide search has revealed linkage with a locus in chromosome 7. As has already occurred in FH-I, elucidation of causative mutations is likely to facilitate earlier detection of PAL and other curable or specifically treatable forms of hypertension. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
There have been no reports of DNA sequences of hepatitis B virus (HBV) strains from Australian Aborigines, although the hepatitis B surface antigen (HBsAg) was discovered among them. To investigate the characteristics of DNA sequences of HBV strains from Australian Aborigines, the complete nucleotide sequences of HBV strains were determined and subjected to molecular evolutionary analysis. Serum samples positive for HBsAg were collected from five Australian Aborigines. Phylogenetic analysis of the five complete nucleotide sequences compared with DNA sequences of 54 global HBV isolates from international databases revealed that three of the five were classified into genotype D and were most closely related in terms of evolutionary distance to a strain isolated from a healthy blood donor in Papua New Guinea. Two of the five were classified into a novel variant genotype C, which has not been reported previously, and were closely related to a strain isolated from Polynesians, particularly in the X and Core genes. These two strains of variant genotype C differed from known genotype C strains by 5.9-7.4% over the complete nucleotide sequence and 4.0-5.6 % in the small-S gene, and had residues Arg(122), Thr(127) and Lys(160) characteristic of serotype ayw3, which have not been reported previously in genotype C. In conclusion, this is the first report of the characteristics of complete nucleotide sequences of HBV from Australian Aborigines. These results contribute to the investigation of the worldwide spread of HBV, the relationship between serotype and genotype and the ancient common origin of Australian Aborigines.
Resumo:
The near completion of the Human Genome Project stands as a remarkable achievement, with enormous implications for both science and society. For scientists, it is the first step in a complex process that will lead to important advances in the diagnosis and treatment of many diseases. Society, meanwhile, must prevent genetic discrimination, and protect genetic privacy through appropriate legislation.