32 resultados para Hot rolled steel coils
Resumo:
This paper reports on measurements of crack growth by environmental assisted fracture (EAF) for 4340 steel in water and in air at various relative humidities. Of most interest is the observation of slow crack propagation in dry air. Fractographic analysis leads to the strong suggestion that this slow crack propagation is due to hydrogen cracking caused by internal hydrogen in solid solution inside the sample material.
Resumo:
The use of gate-to-drain capacitance (C-gd) measurement as a tool to characterize hot-carrier-induced charge centers in submicron n- and p-MOSFET's has been reviewed and demonstrated. By analyzing the change in C-gd measured at room and cryogenic temperature before and after high gate-to-drain transverse field (high field) and maximum substrate current (I-bmax) stress, it is concluded that the degradation was found to be mostly due to trapping of majority carriers and generation of interface states. These interface states were found to be acceptor states at top half of band gap for n-MOSFETs and donor states at bottom half of band gap for p-MOSFETs. In general, hot electrons are more likely to be trapped in gate oxide as compared to hot holes while the presence of hot holes generates more interface states. Also, we have demonstrated a new method for extracting the spatial distribution of oxide trapped charge, Q(ot), through gate-to-substrate capacitance (C-gb) measurement. This method is simple to implement and does not require additional information from simulation or detailed knowledge of the device's structure. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper presents a new approach for the design of genuinely finite-length shim and gradient coils, intended for use in magnetic resonance imaging equipment. A cylindrical target region is located asymmetrically, at an arbitrary position within a coil of finite length. A desired target field is specified on the surface of that region, and a method is given that enables winding patterns on the surface of the coil to be designed, to produce the desired field at the inner target region. The method uses a minimization technique combined with regularization, to find the current density on the surface of the coil. The method is illustrated for linear, quadratic and cubic magnetic target fields located asymmetrically within a finite-length coil.
Resumo:
A method is presented for the systematic design of asymmetric zonal shim coils for magnetic resonance applications. Fourier-series methods are used to represent the magnetic field inside and outside a circular cylinder of length 2L and radius a. The current density on the cylinder is also represented using Fourier series. Any desired field can be specified in advance on the cylinder's radius, over some nonsymmetric portion pL
Resumo:
This study explores several important aspects of the management of new product development (NPD) in the Chinese steel industry. Specifically it explores NPD success factors, the importance of management functions to new product success and measures of new product success from the perspective of the industry's practitioners. Based on a sample of 190 industrial practitioners from 18 Chinese steel companies, the study provides a mixed picture as China makes the transition from a centrally-controlled to market-based economy. On one hand, respondents ranked understanding users' needs as the most important factor influencing the performance of the new products. Further, formulating new product strategy and strengthening market research are perceived as the most important managerial functions in NPD. However, technical performance measures are regarded as more important and are more widely used in industry than market-based or financial measures of success.
Resumo:
Water wetting is a crucial issue in carbon dioxide (CO.) corrosion of multiphase flow pipelines made from mild steel. This study demonstrates the use of a novel benchtop apparatus, a horizontal rotating cylinder, to study the effect of water wetting on CO2 corrosion of mild steel in two-phase flow. The setup is similar to a standard rotating cylinder except for its horizontal orientation and the presence of two phases-typically water and oil. The apparatus has been tested by using mass-transfer measurements and CO2 corrosion measurements in single-phase water flow. CO2 corrosion measurements were subsequently performed using a water/hexane mixture with water cuts varying between 5% and 50%. While the metal surface was primarily hydrophilic under stagnant. conditions, a variety of dynamic water wetting situations was encountered as the water cut and fluid velocity were altered. Threshold velocities were identified at various water cuts when the surface became oil-wet and corrosion stopped.
Resumo:
A model of iron carbonate (FeCO3) film growth is proposed, which is an extension of the recent mechanistic model of carbon dioxide (CO2) corrosion by Nesic, et al. In the present model, the film growth occurs by precipitation of iron carbonate once saturation is exceeded. The kinetics of precipitation is dependent on temperature and local species concentrations that are calculated by solving the coupled species transport equations. Precipitation tends to build up a layer of FeCO3 on the surface of the steel and reduce the corrosion rate. On the other hand, the corrosion process induces voids under the precipitated film, thus increasing the porosity and leading to a higher corrosion rate. Depending on the environmental parameters such as temperature, pH, CO2 partial pressure, velocity, etc., the balance of the two processes can lead to a variety of outcomes. Very protective films and low corrosion rates are predicted at high pH, temperature, CO2 partial pressure, and Fe2+ ion concentration due to formation of dense protective films as expected. The model has been successfully calibrated against limited experimental data. Parametric testing of the model has been done to gain insight into the effect of various environmental parameters on iron carbonate film formation. The trends shown in the predictions agreed well with the general understanding of the CO2 corrosion process in the presence of iron carbonate films. The present model confirms that the concept of scaling tendency is a good tool for predicting the likelihood of protective iron carbonate film formation.
Resumo:
A method is presented for calculating the currents and winding patterns required to design independent zonal and tesseral shim coils for magnetic resonance imaging. Both actively shielded and unshielded configurations are considered, and the region of interest can be located asymmetrically with respect to the coil's length. Streamline, target-field and Fourier-series methods are utilized. The desired target-field is specified at two cylindrical radii, on and inside a circular conducting cylinder of length 2L and radius a. The specification is over some asymmetric portion pL < z < qL of the coil's length (-1 < p < q < 1). Arbitrary functions are used in the outer sections, -L < z < pL and qL < z < L, to ensure continuity of the magnetic field across the entire length of the coil. The entire field is then periodically extended as a half-range cosine Fourier series about either end of the coil. The resultant Fourier coefficients are then substituted into the Fourier-series expressions for the internal and external magnetic fields, and current densities and stream functions on both the primary coil and shield. A contour plot of the stream function directly gives the required coil winding patterns. Spherical harmonic analysis and shielding analysis on field calculations from a ZX shim coil indicate that example designs and theory are well matched.
Resumo:
Prior theoretical studies indicate that the negative spatial derivative of the electric field induced by magnetic stimulation may he one of the main factors contributing to depolarization of the nerve fiber. This paper studies this parameter for peripheral nerve stimulation (PNS) induced by time.-varying gradient fields during MRI scans. The numerical calculations are based on an efficient, quasi-static, finite-difference scheme and an anatomically realistic human, full-body model. Whole-body cylindrical and planar gradient sets in MRI systems and various input signals have been explored. The spatial distributions of the induced electric field and their gradients are calculated and attempts are made to correlate these areas with reported experimental stimulation data. The induced electrical field pattern is similar for both the planar coils and cylindrical coils. This study provides some insight into the spatial characteristics of the induced field gradients for PNS in MRI, which may be used to further evaluate the sites where magnetic stimulation is likely to occur and to optimize gradient coil design.
Resumo:
This paper continues the development of a new approach for the design of shim and gradient coils, used in magnetic resonance imaging (MRI) applications. A cylindrical primary coil of radius a and length 2L is placed inside a co-axial shield cylinder of radius b. An active shielding strategy is used to create a desired target field at an arbitrarily specified (cylindrical) location within the primary coil, and to annul the field at a certain radius outside the shield. The form of the interior target field may be chosen arbitrarily by the designer, although zonal and tesseral harmonics are typically used in MRI applications. The method presented here designs coil windings on both the primary and shielding cylinders, to produce fields that conform to the specified interior target field and the annulled field exterior to the shield. An additional feature of the method presented here is that the target field inside the primary coil is matched at two different radii, to improve overall accuracy. The method is illustrated by designing several shielded shim coils, for creating higher order tesseral fields located asymmetrically within the coil. The simpler case of pure zonal fields is discussed separately and applied to the design of some higher order shielded coils.