29 resultados para Honey -- Australia -- Composition
Resumo:
Alumina extraction from bauxite ore with strong alkali produces waste bauxite refinery residue consisting of residue sand and red mud. The amount and composition of refinery residue depend on the purity of the bauxite ore and extraction conditions, and differs between refineries. The refinery residue is usually stored in engineered disposal areas that eventually have to be revegetated. This is challenging because of the alkaline and sodic nature of the residue. At Alcan Gove's bauxite refinery in Gove, Northern Territory, Australia, research into revegetation of bauxite residue has been conducted since the mid-1970s. In this review, we discuss approaches taken by Alcan Gove to achieve revegetation outcomes (soil capping of refinery residue) on wet-slurry disposal areas. Problems encountered in the past include poor drainage and water logging during the wet season, and salt scalding and capillary rise during the dry season. The amount of available water in the soil capping is the most important determinant of vegetation survival in the seasonally dry climate. Vegetation cover was found to prevent deterioration of the soil cover by minimising capillary rise of alkalinity from the refinery residue. The sodicity and alkalinity of the residue in old impoundments has diminished slightly over the 25 years since it was deposited. However, development of a blocky structure in red mud, presumably due to desiccation, allows root penetration, thereby supplying additional water to salt and alkali-tolerant plant species. This has led to the establishment of an ecosystem that approaches a native woodland.
Resumo:
We report high-precision inductively coupled plasma mass spectrometric (ICP-MS) compositional data for 39 trace elements in a variety of dust deposits, trapped sediments and surface samples from New Zealand and Australia. Dusts collected from the surface of alpine glaciers in the Southern Alps, New Zealand, believed to have undergone long-distance atmospheric transport from Australia, are recognizable on account of their overabundances of Pb and Cu with respect to typical upper crustal values. Long-travelled dust from Australia therefore scavenges these and other metals (e.g. Zn, Sb and Cd) from the atmosphere during transport and deposition. Hence, due to anthropogenic pollution, long-travelled Australian dusts can be recognized by elevated metal contents. The relative abundance of 25 other elements that are not affected by atmospheric pollution, mineral sorting (Zr and Hf) and weathering/solubility (alkali and earth alkali elements) reflects the geochemistry of the dust source sediment. As a result, we are able to establish the provenance of dust using ultra-trace-element chemistry at regional scale. Comparison of long-travelled dust chemistry with potential Australian sources shows that fits of variable quality are obtained. We propose that the best fitting potential source chemistry most likely represents the major dust source area. A binary mixing model is used to demonstrate that admixture of small quantities of local dust provides an even better fitting dust chemistry for the long-travelled dusts. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
The role of mutualisms in contributing to species invasions is rarely considered, inhibiting effective risk analysis and management options. Potential ecological consequences of invasion of non-native pollinators include increased pollination and seed set of invasive plants, with subsequent impacts on population growth rates and rates of spread. We outline a quantitative approach for evaluating the impact of a proposed introduction of an invasive pollinator on existing weed population dynamics and demonstrate the use of this approach on a relatively data-rich case study: the impacts on Cytisus scoparius (Scotch broom) from proposed introduction of Bombus terrestris. Three models have been used to assess population growth (matrix model), spread speed (integrodifference equation), and equilibrium occupancy (lattice model) for C. scoparius. We use available demographic data for an Australian population to parameterize two of these models. Increased seed set due to more efficient pollination resulted in a higher population growth rate in the density-independent matrix model, whereas simulations of enhanced pollination scenarios had a negligible effect on equilibrium weed occupancy in the lattice model. This is attributed to strong microsite limitation of recruitment in invasive C. scoparius populations observed in Australia and incorporated in the lattice model. A lack of information regarding secondary ant dispersal of C. scoparius prevents us from parameterizing the integrodifference equation model for Australia, but studies of invasive populations in California suggest that spread speed will also increase with higher seed set. For microsite-limited C. scoparius populations, increased seed set has minimal effects on equilibrium site occupancy. However, for density-independent rapidly invading populations, increased seed set is likely to lead to higher growth rates and spread speeds. The impacts of introduced pollinators on native flora and fauna and the potential for promoting range expansion in pollinator-limited 'sleeper weeds' also remain substantial risks.
Resumo:
A recent preliminary survey revealed that 12 species of unstalked crinoids occur on a gentle sandy slope (12-18 m depth) at Lizard Island, Great Barrier Reef, Australia; five of which are also found on coral reefs. The other seven appear to constitute a unique assemblage restricted to unconsolidated substrates, where most cling to algae or hide beneath rubble or sponges. Members of this assemblage exhibit all of the basic feeding postures found among reef-dwelling species. However, Comatula rotalaria, which lacks anchoring cirri and bears uniquely differentiated short and long arms, exhibits a posture different from other living crinoids. Quantitative transects reveal apparent depth-related differences in species composition: C. rotalaria dominated the 12 transects in 12-13 m (84% of 82 specimens), while Comatella nigra, Comatula cf. purpurea, Amphimetra cf. tessellata and Zygometra microdiscus accounted for 96% of 54 specimens observed along 12 transects in 16-17 m.
Resumo:
Sugarcane grown in the Ord River district of Western Australia has lower sucrose content than expected from earlier trials and experience in other irrigated districts. High temperatures have been hypothesised as a possible cause. The effects of high temperature (above 32 degrees C) on growth and carbon partitioning were investigated. A temperature regime of (25-38 degrees C) was compared with (23-33 degrees C). In one experiment, 7-month-old plants of cvv. Q117 and Q158 were subjected to the treatments for 2 months. In another experiment, the plants were allowed to regrow (ratoon) for 6 months. In both experiments, the higher temperature resulted in more, shorter internodes and higher moisture content. Most internodes from plants in the higher temperature treatment had lower sucrose content than internodes from the lower temperature. On a dry mass basis the internodes from the plants in the higher temperature had proportionately more fibre and hexoses but lower sucrose. Combined with an increased number of nodes in a stem of similar or shorter length this would result in higher stalk fibre and lower sucrose content. The data provided evidence that sugarcane partitions less carbon to stored sucrose when grown under high compared with low temperatures. The two cultivars partitioned carbon between soluble (sugars) and insoluble (fibre) fractions to different degrees. These experiments also indicate that the current models describing leaf appearance and perhaps sugarcane growth at temperatures above 32 degrees C, in general, need revision.
Resumo:
Modulated temperature differential scanning calorimetry was used to investigate the specific heat capacity (C-p) of 10 Australian honeys within the processing and handling temperatures. The values obtained were found to be different from the literature values at certain temperatures, and are not predictable by the additive model. The C-p of each honey exhibited a cubic relationship (P < 0.001) with the temperature (T, C). In addition, the moisture (M, %), fructose (F, %) and glucose (G, %) contents of the honeys influenced their C-p. The following equation (r(2) = 0.92) was proposed for estimating C-p of honey, and is recommended for use in the honey industry and in research: C = 996.7 + 1.4 x 10(-3)T + 5.6 x 10(-5)T(2) - 2.4 x 10(-7)T(3) - 56.5M - 25.8F - 31.0G + 1.5(M * F) + 1.8(M * G) + 0.8(F * G) - 4.6 x 10(-2) (M * F * G).
Resumo:
Fires are integral to the healthy functioning of most ecosystems and are often poorly understood in policy and management, however, the relationship between floristic composition and habitat structure is intrinsically linked, particularly after fire. The aim of this study was to test whether the variability of habitat structure or floristic composition and abundance in forests at a regional scale can be explained in terms of fire frequency using historical data and experimental prescribed burns. We tested this hypothesis in open eucalypt forests of Fraser Island off the east coast of Australia. Fraser Island dunes show progressive stages in plant succession as access to nutrients decreases across the Island. We found that fire frequency was not a good predictor of floristic composition or abundance across dune systems; rather, its affects were dune specific. In contrast, habitat structure was strongly influenced by fire frequency, independent of dune system. A dense understorey occurred in frequently burnt areas, whereas infrequently burnt areas had a more even distribution of plant heights. Plant communities returned to pre-burn levels of composition and abundances within 6 months of a fire and frequently burnt areas were dominated by early successional species of plant. These ecosystems were characterized by low diversity and frequently burnt areas on the east coast were dominated by Pteridium. Greater midstorey canopy cover in low frequency areas reduces light penetration and allows other species to compete more effectively with Pteridium. Our results strongly indicate that frequent fires on the Island have resulted in a decrease in relative diversity through dominance of several species. Prescribed fire represents a powerful management tool to shape habitat structure and complexity of Fraser Island forests.
Resumo:
This paper describes the results of atmospheric corrosion testing and of an examination of patina samples from Brisbane, Denmark, Sweden, France, USA and Austria. The aim was threefold: (1) to determine the structure of natural patinas and to relate their structure to their appearance in service and to the atmospheric corrosion of copper; (2) to understand why a brown rust coloured layer forms on the surface of some copper patinas; (3) to understand why some patinas are still black in colour despite being of significant age. During the atmospheric corrosion of copper, a two-layer patina forms on the copper surface. Cuprite is the initial corrosion product and cuprite is always the patina layer in contact with the copper. The growth laws describing patina formation indicate that the decreasing corrosion rate with increasing exposure time is due to the protective nature of the cuprite layer. The green patinas were typically characterised by an outer layer of brochantite, which forms as individual crystals on the surface of the cuprite layer, probably by a precipitation reaction from an aqueous surface layer on the cuprite layer. Natural patinas come in a variety of colours. The colour is controlled by the amount of the patina and its chemical composition. Thin patinas containing predominantly cuprite were black. If the patina was sufficiently thick, and the [Fe]/[Cu] ratio was low, then the patina was green, whereas if the [Fe]/[Cu] ratio was approximately 10 at%, then the patina is rust brown in colour. The iron was in solid solution in the brochantite, which might be designated as a (copper/iron) hydroxysulphate. In the brown patinas examined, the iron was distributed predominately in the outermost part of the patina. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The stratiform Century Zn-Pb deposit and the discordant Zn-Pb lode deposits of the Burketown mineral field, northern Australia, host ore and gangue minerals with primary fluid inclusions that have not been affected by the Isan orogeny, thus providing a unique opportunity to investigate the nature of the ore-forming brines. All of the deposits are hosted in shales and siltstones belonging to the Isa superbasin and comprise sphalerite, pyrite, carbonate, quartz, galena, minor chalcopyrite, and minor illite. According to Pb model ages, the main ore stage of mineralization at Century formed at I575 Ma, some 20 m.y. after deposition of the host shale sequence. Microthermometry on undeformed, primary fluid inclusions hosted in porous sphalerite shows that the Zn at Century was transported to the deposit by a homogeneous, Ca2+- and Na+-bearing brine with a salinity of 21.6 wt percent NaCl equiv. delta D-fluid of the fluid inclusion water ranges from -89 to -83 per mil, consistent with a basinal brine that evolved from meteoric water. Fluid inclusion homogenization temperatures range between 74 degrees and 125 degrees C, which are lower than the 120 degrees to 160 degrees C range calculated from vitrinite reflectance and illite crystallinity data from the deposit. This discrepancy indicates that mineralization likely formed at 50 to 85 Mpa, corresponding to a depth of 1,900 to 3,100 m. Transgressive galena-sphalerite veins that cut stratiform mineralization at Century and breccia-filled quartz-dolomite-sphalerite-galena veins in the discordant Zn-Pb lodes have Pb model ages between 1575 and 1485 Ma. Raman spectroscopy and microthermometry reveal that the primary fluid inclusions in these veins contain Ca2+, Na+. but they have lower salinities between 23 and 10 wt percent NaCl equiv and higher delta D-fluid values ranging from -89 to -61 per mil than fluid inclusions in porous sphalerite from Century. Fluid inclusion water from sphalerite in one of the lode deposits has delta O-18(fluid) values of 1.6 and 2.4 per mil, indistinguishable from delta O-18(fluid) values between -0.3 to +7.4 per mil calculated from the isotopic composition of coexisting quartz, dolomite, and illite. The trend toward lower salinities and higher delta D-fluid values relative to the earlier mineralizing fluids is attributed to mixing between the fluid that formed Century and a seawater-derived fluid from a different source. Based on seismic data from the Lawn Hill platform and paragenetic and geochemical results from the Leichhardt River fault trough to the south, diagenetic aquifers in the Underlying Calvert superbasin appear to have been the most likely sources for the fluids that formed Century and the discordant lode deposits. Paragenetically late sphalerite and calcite cut sphalerite, quartz, and dolomite in the lode deposits and contain Na+-dominated fluid inclusions with much lower salinities than their older counterparts. The isotopic composition of calcite also indicates delta O-18(fluid) from 3.3 to 10.7 per mil, which is larger than the range obtained from synmineralization minerals, supporting the idea that a unique fluid source was involved. The absolute timing of this event is unclear, but a plethora of Pb model, K-Ar, and Ar-40/Ar-39 ages between 1440 and 1300 Ma indicate that a significant volume of fluid was mobilized at this time. The deposition of the Roper superbasin from ca. 1492 +/- 4 Ma suggests that these late veins formed from fluids that may have been derived from aquifers in overlying sediments of the Roper superbasin. Clear, buck, and drusy quartz in veins unrelated to any form of Pb-Zn mineralization record the last major fluid event in the Burketown mineral field and form distinct outcrops and ridges in the district. Fluid inclusions in these veins indicate formation from a low-salinity, 300 degrees +/- 80 degrees C fluid. Temperatures approaching 300 degrees C recorded in organic matter adjacent to faults and at sequence boundaries correspond to K-Ar ages spanning 1300 to 1100 Ma, which coincides with regional hydrothermal activity in the northern Lawn Hill platform and the emplacement of the Lakeview Dolerite at the time of assemblage of the Rodinia supercontinent.
Resumo:
Government agencies responsible for riparian environments are assessing the utility of remote sensing for mapping and monitoring vegetation structural parameters. The objective of this work was to evaluate Ikonos and Landsat-7 ETM+ imagery for mapping structural parameters and species composition of riparian vegetation in Australian tropical savannahs for a section of Keelbottom Creek, Queensland, Australia. Vegetation indices and image texture from Ikonos data were used for estimating leaf area index (R-2 = 0.13) and canopy percentage foliage cover (R-2 = 0.86). Pan-sharpened Ikonos data were used to map riparian species composition (overall accuracy = 55 percent) and riparian zone width (accuracy within +/- 3 m). Tree crowns could not be automatically delineated due to the lack of contrast between canopies and adjacent grass cover. The ETM+ imagery was suited for mapping the extent of riparian zones. Results presented demonstrate the capabilities of high and moderate spatial resolution imagery for mapping properties of riparian zones.
Resumo:
Large areas of tropical sub- and inter-tidal seagrass beds occur in highly turbid environments and cannot be mapped through the water column. The purpose of this project was to determine if and how airborne and satellite imaging systems could be used to map inter-tidal seagrass properties along the wet-tropics coast in north Queensland, Australia. The work aimed to: (1) identify the minimum level of seagrass foliage cover that could be detected from airborne and satellite imagery; and (2) define the minimum detectable differences in seagrass foliage cover in exposed intertidal seagrass beds. High resolution spectral-reflectance data (2040 bands, 350 – 2500nm) were collected over 40cm diameter plots from 240 sites on Magnetic Island, Pallarenda Beach and Green Island in North Queensland at spring low tides in April 2006. The seagrass species sampled were: Thalassia hemprechii, Halophila ovalis, Halodule uninerivs; Syringodium isoetifolium, Cymodocea serrulata, and Cymodoea rotundata. Digital photos were captured for each plot and used to derive estimates of seagrass species cover, epiphytic growth, micro- and macro-algal cover, and substrate colour. Sediment samples were also collected and analysed to measure the concentration of Chlorophyll-a associated with benthic micro-algae. The field reflectance spectra were analysed in combination with their corresponding seagrass species foliage cover levels to establish the minimum foliage projective cover required for each seagrass to be significantly different from bare substrate and substrate with algal cover. This analysis was repeated with reflectance spectra resampled to the bandpass functions of Quickbird, Ikonos, SPOT 5 and Landsat 7 ETM. Preliminary results indicate that conservative minimum detectable seagrass cover levels across most the species sampled were between 30%- 35% on dark substrates. Further analysis of these results will be conducted to determine their separability and satellite images and to assess the effects epiphytes and algal cover.