52 resultados para High-dose cyclophosphamide
Resumo:
Using light and electron microscopic histological and immunocytochemical techniques, we investigated the effects of the glucocorticoid dexamethasone on T cell and macrophage apoptosis in the central nervous system (CNS) and peripheral nervous system (PNS) of Lewis rats with acute experimental autoimmune encephalomyelitis (EAE) induced with myelin basic protein (MBP). A single subcutaneous injection of dexamethasone markedly augmented T cell and macrophage apoptosis in the CNS and PNS and microglial apoptosis in the CNS within 6 hours (h). Pre-embedding immunolabeling revealed that dexamethasone increased the number of apoptotic CD5+ cells (T cells or activated B cells), αβ T cells, and CD11b+ cells (macrophages/microglia) in the meninges, perivascular spaces, and CNS parenchyma. The induction of increased apoptosis was dose-dependent. Daily dexamethasone treatment suppressed the neurological signs of EAE. However, the daily injection of a dose of dexamethasone (0.25 mg/kg). which, after a single dose, did not induce increased apoptosis in the CNS or PNS, was as effective in inhibiting the neurological signs of EAE as the high dose (4 mg/kg), which induced a marked increase in apoptosis. This indicates that the beneficial clinical effect of glucocorticoid therapy in EAE does not depend on the induction of increased apoptosis. The daily administration of dexamethasone for 5 days induced a relapse that commenced 5 days after cessation of treatment, with the severity of the relapse tending to increase with dexamethasone dosage.
Resumo:
In this paper, we examine Si and Te ion implant damage removal in GaN as a function of implantation dose, and implantation and annealing temperature. Transmission electron microscopy shows that amorphous layers, which can result from high-dose implantation, recrystallize between 800 and 1100 °C to very defective polycrystalline material. Lower-dose implants (down to 5 × 1013 cm – 2), which are not amorphous but defective after implantation, also anneal poorly up to 1100 °C, leaving a coarse network of extended defects. Despite such disorder, a high fraction of Te is found to be substitutional in GaN both following implantation and after annealing. Furthermore, although elevated-temperature implants result in less disorder after implantation, this damage is also impossible to anneal out completely by 1100 °C. The implications of this study are that considerably higher annealing temperatures will be needed to remove damage for optimum electrical properties. ©1998 American Institute of Physics.
Resumo:
This study was designed to determine in rats whether morphine-3-glucuronide (M3G) produces its neuro-excitatory effects most potently in the ventral hippocampus (as has been reported previously for subanalgesic doses of opioid peptides). Guide cannulae were implanted into one of seven regions of the rat brain: lateral ventricle; ventral, CA1 and CA2-CA3 regions of the hippocampus; amygdala; striatum or cortex. After a 7 day recovery period, rats received intracerebral injections of (i) M3G (1.1 or 11 nmol) (ii) DADLE ([D-Ala(2),D-Leu(5)]enkephalin), (45 nmol, positive controls) or (iii) vehicle (deionised water), and behavioral excitation was quantified over 80 min. High-dose M3G (11 nmol) evoked behavioral excitation in all brain regions but the onset, severity and duration of these effects varied considerably among brain regions. By contrast, low-dose M3G (1.1 nmol) evoked excitatory behaviors only when administered into the ventral hippocampus and the amygdala, with the most potent effects being observed in the ventral hippocampus. Prior administration of the nonselective opioid antagonists, naloxone and beta-funaltrexamine into the ventral hippocampus, markedly attenuated low-dose M3G's excitatory effects but did not significantly alter levels of excitation evoked by high-dose M3G. Naloxone given 10 min after M3G (1.1 or 11 nmol) did not significantly attenuate behavioral excitation. Thus, M3G's excitatory behavioral effects occur most potently in the ventral hippocampus as reported previously for subanalgesic doses of opioid peptides, and appear to be mediated through at least two mechanisms, one possibly involving excitatory opioid receptors and the other, non-opioid receptors.
Resumo:
The present paper reviews research in the area of the broad-spectrum chemotherapeutic agent cisplatin (cis-diamminedichloro-platinum II) and examines the implications for clinical neuropsychology arising from the neurological disruption associated with cisplatin-based therapy. The paper begins with a brief review of cisplatin treatment in terms other than survival alone, and examines the side-effects and the potential central nervous system (CNS) dysfunction in terms of neurological symptoms and concomitant implications for neuropsychology. Two main implications for clinical neuropsychology arising from cisplatin therapy are identified. First, cisplatin therapy impacts upon the psychological well-being of the patient, particularly during and in the months following treatment. It is suggested that during this time, a primary role for neuropsychology is to focus upon the monitoring and the active enhancement of the patient's social, psychological and spiritual resources. Second, with regard to neurocognitive changes, the review suggests that (1) neurocognitive assessment may not yield stable results within 8 months following treatment and (2) while perceptual, memory, attentional and executive dysfunction may be predicted following cisplatin treatment, little systematic research has been carried out to investigate such a possibility. Future research might profitably address this issue and also specifically examine the effects of low dosage cisplatin-based therapy and the effects of recently developed neuroprotective agents. Finally, there is some evidence to suggest that women may be more susceptible to neurotoxicity during cisplatin therapy, but no gender-related cognitive effects are reported in the cisplatin literature. Future research could usefully investigate gender differences in association with cisplatin chemotherapy. Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
We have previously shown that exposing rats to a relatively high dose of ethanol during early postnatal life resulted in a deficit in spatial learning ability. This ability is controlled, at least in part, by the hippocampal formation. The purpose of the present study was to determine whether exposure of rats to ethanol during early postnatal life affected the number of specific neurons in the hippocampus. Wistar rats were exposed to a relatively high daily dose of ethanol between postnatal days 10 and 15 by placing them for 3 h each day in a chamber containing ethanol vapor. The blood ethanol concentration was about 430 mg/dl at the end of the exposure period. Groups of ethanol-treated (ET) rats, separation controls (SC), and mother-reared controls (MRC) were anesthetized and killed at 16 days of age by perfusion with phosphate-buffered glutaraldehyde (2.5%). The Cavalieri principle was used to determine the volume of various subdivisions of the hippocampal formation (CA1, CA2+CA3, hilus, and granule cell layer), and the physical disector method was used to estimate the numerical densities of neurons within each subdivision. The total number of neurons was calculated by multiplying estimates of the numerical density with the volume. There were, on average, about 441,000 granule cells in the granule cell layer and 153,000 to 177,000 pyramidal cells in both the CA1 and CA2+CA3 regions in all three treatment groups. In the hilus region, ET rats had about 27,000 neuronal cells. This was significantly fewer than the average of 38,000 such neurons estimated to be present in both MRC and SC animals. Thus, neurons in the hilus region may be particularly vulnerable to the effects of a high dose of ethanol exposure during early postnatal life. (C) 2000 Wiley-Liss, Inc.
Resumo:
We previously showed that 16-day-old rats exposed to a relatively high dose of ethanol at 10-15 postnatal days of age have fewer neurons in the hilus region of the hippocampus compared with controls. Dentate gyrus granule cell numbers, however, showed no statistically significant changes attributable to the ethanol treatment. It is possible that some of the changes in brain morphology, brought about as a result of the exposure to ethanol during early life, may not be manifested until later in life. This question has been further addressed in an extension to our previous study. Wistar rats were exposed to a relatively high daily dose of ethanol on postnatal days 10-15 by placement in a chamber containing ethanol vapour, for 3 h/day. The blood ethanol concentration was found to be similar to430 mg/dl at the end of the period of exposure. Groups of ethanol-treated (ET), separation control (SC), and mother-reared control (MRC) rats were anaesthetised and killed either at 16 or 30 days of age by perfusion with phosphate-buffered 2.5% glutaraldehyde. The Cavalieri principle and the physical disector methods were used to estimate, respectively, the regional volumes and neuron cell numerical densities in the hilus and granule cell regions of the dentate gyrus. The total numbers of neurons in the hilus region and granule cell layer were computed from these estimates. It was found that 16-day-old animals had 398,000-441,000 granule cells, irrespective of group. The numbers of granule cells increased such that by 30 days of age, rats had 487,000-525,500 granule cells. However, there were no significant differences between ethanol-treated rats and their age-matched controls in granule cell numbers. In contrast, ethanol-treated rats had slightly but significantly fewer neurons in the hilus region than did control animals at 16 days of age, but not at 30 days of age. Therefore, it appears that a short period of ethanol exposure during early life can have effects on neuron numbers of some hippocampal neurons, but not others. The effects on hilar neuron numbers, observed as a result of such short periods of ethanol treatment, appeared to be transitory. (C) 2003 Wiley-Liss, Inc.
Resumo:
We have previously shown that exposing rats to a relatively high dose of ethanol during early postnatal life can result in an alteration in spatial learning ability. The hippocampal formation is known to be involved in the control of this ability. The purpose of the present study was to determine whether exposure of rats to ethanol during early postnatal life had either immediate or delayed effects on the numbers of pyramidal cells in the CA1-CA3 subregion of the hippocampus. Wistar rats were exposed to a relatively high daily dose of ethanol at postnatal day 10-15 by placing them for 3 h/day in a chamber containing ethanol vapor. Groups of ethanol-treated (ET), separation control (SC), and mother-reared control (MRC) rats were anesthetized and killed at 16 and 30 days of age by perfusion with phosphate-buffered 2.5% glutaraldehyde. The Cavalieri principle was used to determine the volumes of the CA1 and CA2+CA3 regions. The physical disector method was used to estimate the numerical density of neurons in each of the subdivisions. The total number of pyramidal cells was calculated by multiplying the appropriate estimates of the numerical density by the volume. There were significant age-related reductions in the total numbers of pyramidal cells at 16-30 days of age irrespective of the groups examined. Ethanol treated rats were found to have slightly but significantly fewer pyramidal cell neurons than either the MRC or SC groups. These observations indicate that pyramidal cells in the hippocampus may be vulnerable to a relatively high dose of ethanol exposure during this short period of early postnatal life. (C) 2003 Wiley-Liss, Inc.
Resumo:
Rats exposed to a relatively high dose (7.5 g/kg body weight) of alcohol on either the fifth or tenth postnatal day of age have been reported to have long-lasting deficits in spatial learning ability as tested on the Morris water maze task. The question arises concerning the level of alcohol required to achieve this effect. Wistar rats were exposed to either 2, 4 or 6 g/kg body weight of ethanol administered as a 10% solution. This ethanol was given over an 8-h period on the fifth postnatal day of age by means of an intragastric cannula. Gastrostomy controls received a 5% sucrose solution substituted isocalorically for the ethanol. Another set of pups raised by their mother were used as suckle controls. All surgical procedures were carried out under halothane vapour anaesthesia. After the artificial feeding regimes all pups were returned to lactating dams and weaned at 21 days of age. The spatial learning ability of these rats was tested in the Morris water maze when they were between 61-64 days of age. This task requires the rats to swim in a pool containing water made opaque and locate and climb onto a submerged platform. The time taken to accomplish this is known as the escape latency. Each rat was subjected to 24 trials over 3 days of the test period. Statistical analysis of the escape latency data revealed that the rats given 6 g/kg body weight of ethanol had significant deficits in their spatial learning ability compared with their control groups. However, there was no significant difference in spatial learning ability for the rats given either 2 or 4 g/kg body weight of ethanol compared with their respective gastrostomy or suckle control animals. We concluded that ethanol exposure greater than 4 g/kg over an 8-h period to 5-day-old rats is required for them to develop long-term deficits in spatial learning behaviour. (C) 1998 Elsevier Science Inc.
Resumo:
The prevalence of neoplasia in birds is generally low; however, in some species of companion and aviary birds, the incidence is high and neoplasia is a common cause of death. Surgical excision or limb amputation has been performed as the therapeutic plan. Chemotherapy in the treatment of avian neoplasia is largely empirical and poorly documented. For example, cisplatin has been used intralesionally in macaws (Ara species) with limited clinical success. Eight sulphur-crested cockatoos (Cacatua galerita), under general isoflurane anesthesia, were infused intravenously with cisplatin at 6.4 or 1.0 mg/kg over 1 hour and hydrated with lactated Ringer's solution for 1 hour before and 2 hours after cisplatin infusion. Birds were euthanatized 96 hours after infusion, except for 2 birds given the low cisplatin dose, which were euthanatized on day 35 after dosing. All birds tolerated the study procedure while under anesthesia. Blood pressure, heart rate, and respiratory rate did not change significantly. In the low-dose group, the mean cloacal temperature decreased significantly during the infusion period (P < .001) and then rose progressively to preinfusion values by 24 hours. Also in this group, the mean body weight tended to increase during the infusion period before significantly decreasing (P < .05) by 5% at 96 hours after dosing. At 24 hours after dosing, all birds were bright and eating. However, intermittent regurgitation and fecal changes (moist, dark green feces and yellow urates) occurred in 3 of 8 birds, especially those given the high dose. By 72 hours after dosing, droppings in the low-dose group were normal in appearance. One bird in the high-dose group died by 94 hours after dosing. Myelosuppression was not observed in any bird and at necropsy, no evidence of cisplatin toxicity was found except in 1 bird given the high cisplatin dose. On histology, this bird showed nephrotoxicity, and its serum uric acid levels and mean estimated white blood cell count increased significantly by 24 hours after dosing. This paper reports for the first time the effect of systemic cisplatin administration in birds and provides veterinarians data for formulating efficacious and safe protocols for platinum-containing compounds when treating neoplasia in parrots and other companion birds.
Resumo:
Animal models of autoimmune disease and case reports of patients with these diseases who have been involved in bone marrow transplants have provided important data implicating the haemopoietic stem cell in rheumatic disease pathogenesis. Animal and human examples exist for both cure and transfer of rheumatoid arthritis, systemic lupus erythematosus (SLE) and other organ-specific diseases using allogeneic haemopoietic stem cell transplantation. This would suggest that the stem cell in these diseases is abnormal and could be cured by replacement of a normal stem cell although more in vitro data are required in this area. Given the morbidity and increased mortality in some patients with severe autoimmune diseases and the increasing safety of autologous haemopoietic stem cell transplantation (HSCT), pilot studies have been conducted using HSCT in rheumatic diseases. It is still unclear whether an autologous graft will cure these diseases but significant remissions have been obtained which have provided important data for the design of randomized trials of HSCT versus more conventional therapy. Several trials are now open to accrual under the auspices of the European Bone Marrow Transplant Group/European League Against Rheumatism (EBMT/EULAR) registry. Future clinical and laboratory research will need to document the abnormalities of the stem cell of a rheumatic patient because new therapies based on gene therapy or stem cell differentiation could be apllied to these diseases. With increasing safety of allogeneic HSCT it is not unreasonable to predict cure of some rheumatic diseases in the near future.
Resumo:
We report our experience with the combination of anti-thymocyte globulin (ATGAM) and tacrolimus in the treatment of 20 patients with steroid refractory and dependent acute graft-versus-host disease (GVHD) transplanted between August 1996 and February 2000. All patients received cyclosporine-based GVHD prophylaxis. Thirteen patients developed a maximum of grade TV, five grade III and two grade II acute GVHD, with 15 patients being refractory to steroids and five dependent on steroids. Patients were treated with ATGAM (15 mg/kg for 5 d) and tacrolimus (0.025-0.1 mg/kg/d) in addition to continuation of their high-dose steroids and cessation of their cyclosporine. Within 28 d of treatment, we observed eight complete responses (CR), six partial responses (PR) and six with no response. Overall response (CR + PR) was predicted by GVHD severity. Infectious complications occurred in 80% of patients. The median survival was 86.5 d (range, 21-1081 d) with 35% of patients remaining alive, Survival following combination therapy was significantly more likely in men (P < 0.001), skin-only GVHD (P = 0.027), less severe GVHD (P = 0.048), and in responders to tacrolimus and ATGAM (P< 0.001). In conclusion, concurrent introduction of ATGAM and tacrolimus is a promising therapeutic combination for GVHD refractory to steroids and cyclosporine.
Resumo:
The early effects of clinical dose of cisplatin (100 mg/m(2)) on distort ion-product otoacoustic emissions (DPOAE) thresholds and the relationship between DPOAE threshold shifts and changes in plasma concentrations of filterable and total platinum (Pt) following infusion of cisplatin in a dog model were investigated. The DPOAE thresholds (based on input-output function) were measured 2 days before a single high dose of cisplatin administration, and compared with measurements recorded 2 and 4 days after infusion. The results revealed DPOAE thresholds to be elevated by 4 days after the administration of cisplatin. However, this elevation could not be correlated with plasma concentrations of filterable and total Pt, which showed little variation over the 48-hour postinfusion period between animals. The present study demonstrated that DPOAE thresholds have the potential to be used as an indicator of cisplatin-induced ototoxicity, and cisplatin-induced ototoxicity could not be explained by plasma Pt kinetics in individual animals.
Resumo:
The ability of gonadotrophin releasing hormone (GnRH) agonist implants to suppress ovarian activity and prevent pregnancies, long-term, was examined in heifers and cows maintained under extensive management. At three cattle stations, heifers (2-year-old) and older cows (3- to 16-year-old) were assigned to a control group that received no treatment, or were treated with high-dose (12 mg, Station A) or low-dose (8 mg, Station B and Station Q GnRH agonist implants. The respective numbers of control and GnRH agonist-treated animals (heifers + cows) at each station were: Station A, 20 and 99; Station B, 19 and 89; Station C, 20 and 76. Animals were maintained with 4% bulls and monitored for pregnancy at 2-monthly intervals for approximately 12 months. Pregnancy rates for control heifers and control cows ranged from 60-90% and 80-100%, respectively, depending on the study site. The respective number of animals (heifers + cows) treated with GnRH agonist that conceived, and days to first conception, were: Station A, 9 (9%) and 336 3 days; Station B, 8 (10%) and 244 +/- 13 days; Station C, 20 (26%) and 231 +/- 3 days. Treatment with high-dose GnRH agonist prevented pregnancies for longer (similar to300 days) than treatment with low-dose GnRH agonist (similar to200 days). In the majority of heifers and cows treated with GnRH agonist, ovarian follicular growth was restricted to early antral follicles (2-4 mm). The findings indicate that GnRH agonist implants have considerable potential as a practical technology to suppress ovarian activity and control reproduction in female cattle maintained in extensive rangelands environments. The technology also has broader applications in diverse cattle production systems. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Mutations in the E1alpha subunit of the pyruvate dehydrogenase multienzyme complex may result in congenital lactic acidosis, but little is known about the consequences of these mutations at the enzymatic level. Here we characterize two mutants (F205L and T231A) of human pyruvate dehydrogenase in vitro, using the enzyme expressed in Escherichia coli. Wild-type and mutant proteins were purified successfully and their kinetic parameters were measured. F205L shows impaired binding of the thiamin diphosphate cofactor, which may explain why patients carrying this mutation respond to high-dose vitamin B-1 therapy. T231A has very low activity and a greatly elevated K-m for pyruvate, and this combination of effects would be expected to result in severe lactic acidosis. The results lead to a better understanding of the consequences of these mutations on the functional and structural properties of the enzyme, which may lead to improved therapies for patients carrying these mutations.
Resumo:
Candidate prophylactic vaccines based on papillomavirus L1 virus-like particles (VLPs) are currently in human clinical trials. The main long-term goal of the vaccine is to reduce the incidence of cervical cancer and its precursors. In animal papillomavirus models, systemic immunization with L1 VLPs can induce high titers of neutralizing antibodies that confer protection against high-dose experimental papillomavirus challenge. In humans, systemic vaccination with L1 VLPs has been well tolerated and induced high serum antibody titers (at least 40 times higher than titers seen following natural infection). A recent proof of principle HPV16 L1 VLP efficacy trial has shown excellent protection against persistent HPV16 infection and associated cytological abnormalities. Large scale efficacy trials of L1 VLPs from HPV16 and 18 (the HPV types found most frequently in cervical cancer), with or without HPV6 and 11 (the HPV types responsible for most genital warts), are planned. If the results of these large trials support the encouraging results of the early trials, they should lead to a commercial prophylactic HPV vaccine. Implementation issues may include how to make the vaccine available in the developing world, where the majority of cervical cancer cases occur, the appropriate age of vaccination, and the role of male vaccination. Because a VLP vaccine is likely to provide type-specific protection, increasing the number of cancer-associated HPV types in the vaccine is a likely approach to broadening the protection to additional types. There will probably also be efforts to develop alternative vaccine formulations better suited to implementation in developing countries as well as attempts to develop vaccines with a therapeutic activity against established HPV infection because a combined prophylactic/therapeutic vaccine may be expected to have an even greater impact than a purely prophylactic vaccine on HPV induced disease.