30 resultados para High silica glass
Resumo:
Mesoporous MCM-41 silica immobilized aluminium chloride shows high catalytic activity and selectivity in the Friedel-Crafts alkylation of naphthalene with isopropanol.
Resumo:
Tracking the reaction history is the means of choice to identify bioactive compounds in large combinatorial libraries. The authors describe two approaches to synthesis on silica beads: a) addition of a reporter dye tag during each synthesis step (see Figure), which attaches itself to the bead by colloidal forces, and b) encapsulating arrays of fluorescent dyes into the beads to encode them uniquely, for recognition with a flow cytometer after each reaction step.
Resumo:
Silica xerogels were prepared by a sol-gel process catalyzed by acid with tetraethylorthosilicate, and using an organic covalent ligand template (methyltriethoxysilane) or a noncovalent template C6 surfactant (triethylhexylammonium bromide). The influence of hydrotreatment on the structure of templated xerogels is examined in terms of surface area, micropore volume, average pore size, and pore size distribution, and compared against a blank xerogel (nontemplated). The role of surface functional groups was evaluated using Si-29 nuclear magnetic resonance. The structural integrity of the xerogel was maintained to a large extent in samples that had a high contribution of Q(4) species (siloxane groups). Xerogel matrix densification occurred when there was a large concentration of Q(3) and Q(2) species (silanol groups), which also were responsible for increased hydrophilicity. The templated xerogels resulted in up to a 25% concentration of methyl functional groups (T-3 and T-2 species), leading to hydrophobic xerogels. The best results in terms of structural integrity and hydrophobicity were obtained with templated xerogels prepared with the C6 surfactant. The results in this study suggest that surfactant-enhanced condensation reactions lead to structures with a high contribution of Q(4) groups, which are not susceptible to water attack, but are strong enough to oppose matrix densification during rehydration.
Resumo:
Highly filled thermosets are used in applications such as integrated circuit (IC) packaging. However, a detailed understanding of the effects of the fillers on the macroscopic cure properties is limited by the complex cure of such systems. This work systematically quantifies the effects of filler content on the kinetics, gelation and vitrification of a model silica-filled epoxy/amine system in order to begin to understand the role of the filler in IC packaging cure. At high cure temperatures (100 degreesC and above) there appears to be no effect of fillers on cure kinetics and gelation and vitrification times. However, a decrease in the gelation and vitrification times and increase the reaction rate is seen with increasing filler content at low cure temperatures (60-90 degreesC). An explanation for these results is given in terms of catalysation of the epoxy amine reaction by hydrogen donor species present on the silica surface and interfacial effects.
Resumo:
The toxicity of aluminium (Al) to fish in acidic waters has been well documented. It was therefore expected that Al toxicity would be significant in fish communities in Gadjarrigamarndah (Gadji) Creek, a seasonally flowing stream in tropical northern Australia. This creek receives acidic groundwater containing elevated concentrations of Al from earlier land irrigation of treated mine tailings water from the former Nabarlek uranium mine. It was hypothesised that Al toxicity was reduced by high levels of silica (Si) in the water, and the subsequent formation of Al-silicate complexes. This prompted a laboratory assessment of the toxicity of Gadji Creek water to sac-fry of the native fish, Mogurnda mogurnda, followed by more detailed investigation of the toxicity of Al and the influence of Si in reducing Al toxicity. No mortality of M. mogurnda sac-fry was observed in two toxicity tests using Gadji Creek water collected in August 1997 and September 1998. The majority of Al (80-95%) was calculated to be complexed with humic substances and sulfate, with <1% being complexed with silicate. Assessment of the influence of silica on the acute toxicity of Al in the absence of natural organic complexants (i.e. in reconstituted freshwater, pH 5) revealed that Si reduced Al toxicity. As the molar ratio of Si:Al was increased, the percent survival of M. mogurnda sac-fry increased until there was no significant (P > 0.05) difference from the controls. However, speciation modelling again predicted that little (<3%) Al complexed with silicate, with the speciation and bioavailability of Al remaining constant as the molar ratio of Si:Al increased. Therefore, the original hypothesis that Al-silicate complexes in solution reduced the toxicity of Al to M. mogurnda could not be supported. This potential mechanism, and an alternative hypothesis, that Si competes with Al for binding sites at the fish gill surface, requires further investigation. Crown Copyright (C) 2002 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The superplastic deformation behavior and superplastic forming ability of the Zr41.25Ti13.75Ni10Cu12.5Be22.5 (at.%) bulk metallic glass (BMG) in the supercooled liquid region were investigated. The isothermal tensile results indicate (hat the BMG exhibits a Newtonian behavior at low strain rates but a non-Newtonian behavior at hiqh-strain rates in the initial deformation stage. The maximum elongation reaches as high as 1624% at 656 K. and nanocrystallization was found to occur during the deformation process. Based cm the analysis on tensile deformation. a gear-like micropart is successfully die-forged via a superplastic forgings process. demonstrating that the BMG has excellent workability in the supercooled liquid region. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We study here the adsorption of hexane on nanoporous MCM-41 silica at 303, 313, and 323 K, for various pore diameters between 2.40 and 4.24 nm. Adsorption equilibria, measured thermogravimetrically, show that all the isotherms, that are somewhat akin to those of type V, exhibit remarkably sharp capillary adsorption phase transition steps and are reversible. The position of the phase transition step gradually shifts from low to high relative pressure with an increase in the temperature as well as the pore sizes. The isosteric heats of adsorption derived from the equilibrium information using the Clapeyron equation reveal a gradual decrease with increasing adsorbed amount because of the surface heterogeneity but approach a constant value near the phase transition. A decrease in the pore size results in an increase in the isosteric heat of adsorption because of the increased dispersion forces. A simple strategy, based on the Broekhoff and De Boer adsorption theory, successfully interprets the hexane adsorption isotherms for the different pore size MCM-41 samples. The parameters of an empirical expression, used to represent the potential of interaction between the adsorbate and adsorbent, are obtained by fitting the monolayer region prior to capillary condensation and the experimental phase transition simultaneously, for some pore sizes. Subsequently, the parameters are used to predict the adsorption isotherm on other pore size samples, which showed good agreement with experimental data.
Resumo:
As a result of their relative concentration towards the respective Atlantic margins, the silicic eruptives of the Parana (Brazil)-Etendeka large igneous province are disproportionately abundant in the Etendeka of Namibia. The NW Etendeka silicic units, dated at similar to132 Ma, occupy the upper stratigraphic levels of the volcanic sequences, restricted to the coastal zone, and comprise three latites and five quartz latites (QL). The large-volume Fria QL is the only low-Ti type. Its trace element and isotopic signatures indicate massive crustal input. The remaining NW Etendeka silicic units are enigmatic high-Ti types, geochemically different from low-Ti types. They exhibit chemical affinities with the temporally overlapping Khumib high-Ti basalt (see Ewart et al. Part 1) and high crystallization temperatures (greater than or equal to980 to 1120degreesC) inferred from augite and pigeonite phenocrysts, both consistent with their evolution from a mafic source. Geochemically, the high-Ti units define three groups, thought genetically related. We test whether these represent independent liquid lines of descent from a common high-Ti mafic parent. Although the recognition of latites reduces the apparent silica gap, difficulty is encountered in fractional crystallization models by the large volumes of two QL units. Numerical modelling does, however, support large-scale open-system fractional crystallization, assimilation of silicic to basaltic materials, and magma mixing, but cannot entirely exclude partial melting processes within the temporally active extensional environment. The fractional crystallization and mixing signatures add to the complexity of these enigmatic and controversial silicic magmas. The existence, however, of temporally and spatially overlapping high-Ti basalts is, in our view, not coincidental and the high-Ti character of the silicic magmas ultimately reflects a mantle signature.
Resumo:
High pressure homogenisation (HPH) is a novel dairy processing tool, which has many effects on enzymes, microbes, fat globules and proteins in milk. The effects of HPH on milk are due to a combination of shear forces and frictional heating of the milk during processing; the relative importance of these different factors is unclear, and was the focus of this study. The effect of milk inlet temperature (in the range 10-50 degrees C) on residual plasmin, alkaline phosphatase, lactoperoxidase and lipase activities in raw whole bovine milk homogenised at 200 MPa was investigated. HPH caused significant heating of the milk; outlet temperature increased in a linear fashion (0(.)5887 degrees C/degrees C, R-2 =0-9994) with increasing inlet temperature. As milk was held for 20 s at the final temperature before cooling, samples of the same milk were heated isothermally in glass capillary tubes for the same time/temperature combinations. Inactivation profiles of alkaline phosphatase in milk were similar for isothermal heating or HPH, indicating that loss of enzyme activity was due to heating alone. Loss of plasmin and lactoperoxidase activity in HPH milk, however, was greater than that in heated milk. Large differences in residual lipase activities in milks subjected to heating or HPH were observed due to the significant increase in lipase activity in homogenised milk. Denaturation of beta-lactoglobulin was more extensive following HPH than the equivalent heat treatment. Inactivation of plasmin was correlated with increasing fat/serum interfacial area but was not correlated with denaturation of beta-lactoglobulin. Thus, while some effects of HPH on milk are due to thermal effects alone, many are induced by the combination of forces and heating to which the milk is exposed during HPH.
Resumo:
The yield strength of high-pressure diecast (hpdc) test bars of alloy AZ91 increases with decreasing section thickness while its hardness remains approximately constant. This behaviour is in contrast with that of the gravity cast alloy, whose hardness scales with the yield strength. Vickers hardness measured on the surface of hpdc test bars using increasing loads shows that the subsurface porosity layer usually found in hpdc material may gradually collapse under the indent, lowering the hardness. However, this is insufficient to explain the lack of correlation between hardness and yield strength. It is argued that the low strain-hardening rate of high-pressure diecast material leads to lower than expected hardness values. In addition, it is shown that the plastic zone under a macro indentation is largely contained by the softer core of the castings, rendering hardness insensitive to the casting thickness. It is concluded that macrohardness is too coarse a tool for a meaningful determination of the strength of hpdc material. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A range of polyimides have been subjected to electron beam radiolysis at different temperatures. These polyimides were chemically designed to suit space applications, being either transparent or having groups which provide oxidation resistance. The structural changes that occur in the polyimides, when subjected to electron beam irradiation doses up to 18.5 MGy and up to temperatures close to their glass transition temperatures, were studied using FT-Raman spectroscopy. The range of polyimides studied included a series of perfluoropolyimides, a silicon-modified polyimide, and Ultem. The changes in the Raman peak intensities of the different groups indicated scission reactions involving the imide rings and ether linkages. (c) 2006 Wiley Periodicals, Inc.
Resumo:
Subtropical estuaries have received comparatively little attention in the study of nutrient loading and subsequent nutrient processing relative to temperate estuaries. Australian estuaries are particularly susceptible to increased nutrient loading and eutrophication, as 75% of the population resides within 200 km of the coastline. We assessed the factors potentially limiting both biomass and production in one Australian estuary, Moreton Bay, through stoichiometric comparisons of nitrogen (N), phosphorus (P), silicon (Si), and carbon (C) concentrations, particulate compositions, and rates of uptake. Samples were collected over 3 seasons in 1997-1998 at stations located throughout the bay system, including one riverine endmember site. Concentrations of all dissolved nutrients, as well as particulate nutrients and chlorophyll, declined 10-fold to 100-fold from the impacted western embayments to the eastern, more oceanic-influenced regions of the bay during all seasons. For all seasons and all regions, both the dissolved nutrients and particulate biomass yielded N : P ratios < 6 and N : Si ratios < 1. Both relationships suggest strong limitation of biomass by N throughout the bay. Limitation of rates of nutrient uptake and productivity were more complex. Low C : N and C : P uptake ratios at the riverine site suggested light limitation at all seasons, low N : P ratios suggested some degree of N limitation and high N : Si uptake ratios in austral winter suggested Si limitation of uptake during that season only. No evidence of P limitation of biomass or productivity was evident.
Resumo:
A strategy for the production and subsequent characterization of biofunctionalized silica particles is presented. The particles were engineered to produce a bifunctional material capable of both (a) the attachment of fluorescent dyes for particle encoding and (b) the sequential modification of the surface of the particles to couple oligonucleotide probes. A combination of microscopic and analytical methods is implemented to demonstrate that modification of the particles with 3-aminopropyl trimethoxysilane results in an even distribution of amine groups across the particle surface. Evidence is provided to indicate that there are negligible interactions between the bound fluorescent dyes and the attached biomolecules. A unique approach was adopted to provide direct quantification of the oligonucleotide probe loading on the particle surface through X-ray photoelectron spectroscopy, a technique which may have a major impact for current researchers and users of bead-based technologies. A simple hybridization assay showing high sequence specificity is included to demonstrate the applicability of these particles to DNA screening.
Resumo:
The ability to make rapid measurements on small samples using laser fluorination enhances the potential of oxygen isotopes in the investigation of early inorganic materials and technologies. delta O-18 and Sr-87/Sr-86 values are presented for glass from two primary production sites, four secondary production sites and a consumer site in the Near East, dating from Late Antiquity to the medieval period. delta O-18 is in general slightly less effective than Sr-87/Sr-86 in discriminating between sources, as the spread of measured values from a single source is somewhat broader relative to the available range. However, while Sr-87/Sr-86 is derived predominantly from either the lime-bearing fraction of the glass-making sand or the plant ash used as a source of alkali, delta O-18 derives mainly from the silica. Thus the two measurements can provide complementary information. A comparison of delta O-18 for late Roman - Islamic glasses made on the coast of Syria-Palestine with those of previously analysed glasses from Roman Europe suggests that the European glasses are relatively enriched in O-18. This appears to contradict the view that most Roman glass was made using Levantine sand and possible interpretations are discussed.
Resumo:
A significant enhancement in glass formation in a newly developed Zr51Cu20.7Ni12Al16.3 alloy has been achieved by yttrium doping. With just 0.5 at.% yttrium doping, the critical diameter of the as-cast alloys for glass formation has been increased from 3 mm to at least 10 mm. In the undoped, large-sized alloys, massive oxygen stabilized crystalline phases are observed but disappear in yttrium doped alloys. Very small amounts of stable alpha-Y2O3 phases found in the yttrium doped alloys, and their negligible effect on the metallic glasses' properties, provide a superior solution to achieve metallic glasses with a high glass formability. (c) 2006 Elsevier B.V. All rights reserved.