138 resultados para Hierarchical lattices
Resumo:
This paper incorporates hierarchical structure into the neoclassical theory of the firm. Firms are hierarchical in two respects: the organization of workers in production and the wage structure. The firm’s hierarchy is represented as the sector of a circle, where the radius represents the hierarchy’s height, the width of the sector represents the breadth of the hierarchy at a given height, and the angle of the sector represents span of control for any given supervisor. A perfectly competitive firm then chooses height and width, as well as capital inputs, in order to maximize profit. We analyze the short run and long run impact of changes in scale economies, input substitutability and input and output prices on the firm’s hierarchical structure. We find that the firm unambiguously becomes more hierarchical as the specialization of its workers increases or as its output price increases relative to input prices. The effect of changes in scale economies is contingent on the output price. The model also brings forth an analysis of wage inequality within the firm, which is found to be independent of technological considerations, and only depends on the firm’s wage schedule.
Resumo:
A Latin square is pan-Hamiltonian if the permutation which defines row i relative to row j consists of a single cycle for every i j. A Latin square is atomic if all of its conjugates are pan-Hamiltonian. We give a complete enumeration of atomic squares for order 11, the smallest order for which there are examples distinct from the cyclic group. We find that there are seven main classes, including the three that were previously known. A perfect 1-factorization of a graph is a decomposition of that graph into matchings such that the union of any two matchings is a Hamiltonian cycle. Each pan-Hamiltonian Latin square of order n describes a perfect 1-factorization of Kn,n, and vice versa. Perfect 1-factorizations of Kn,n can be constructed from a perfect 1-factorization of Kn+1. Six of the seven main classes of atomic squares of order 11 can be obtained in this way. For each atomic square of order 11, we find the largest set of Mutually Orthogonal Latin Squares (MOLS) involving that square. We discuss algorithms for counting orthogonal mates, and discover the number of orthogonal mates possessed by the cyclic squares of orders up to 11 and by Parker's famous turn-square. We find that the number of atomic orthogonal mates possessed by a Latin square is not a main class invariant. We also define a new sort of Latin square, called a pairing square, which is mapped to its transpose by an involution acting on the symbols. We show that pairing squares are often orthogonal mates for symmetric Latin squares. Finally, we discover connections between our atomic squares and Franklin's diagonally cyclic self-orthogonal squares, and we correct a theorem of Longyear which uses tactical representations to identify self-orthogonal Latin squares in the same main class as a given Latin square.
Resumo:
Background and Purpose: What drives some athletes to achieve at the highest level whilst other athletes fail to achieve their physical potential? Why does the ‘fire’ burn so brightly for some elite athletes and not for others? A good understanding of an athlete’s motivation is critical to a coach designing an appropriate motivational climate to realize an athlete’s physical talent. This paper examines the motivational processes of elite athletes within the framework of three major social-cognitive theories of motivation. Method: Participants were five male and five female elite track and field athletes from Australia who had finished in the top ten at either the Olympic Games and/or the World Championships in the last six years. Qualitative data were collected using semi-structured interviews. Results and Discussion: Inductive analyses revealed several major themes associated with the motivational processes of elite athletes: (a) they were highly driven by personal goals and achievement, (b) they had strong self-belief, and (c) track and field was central to their lives. The findings are discussed in light of recent social-cognitive theories of motivation, namely, self-determination theory, the hierarchical model of motivation, and achievement goal theory. Self-determined forms of motivation characterised the elite athletes in this study and, consistent with social-cognitive theories of motivation, it is suggested that goal accomplishment enhances perceptions of competence and consequently promotes self-determined forms of motivation.
Resumo:
The trade spectrum of a simple graph G is defined to be the set of all t for which it is possible to assemble together t copies of G into a simple graph H, and then disassemble H into t entirely different copies of G. Trade spectra of graphs have applications to intersection problems, and defining sets, of G-designs. In this investigation, we give several constructions, both for specific families of graphs, and for graphs in general.
Resumo:
We present the temperature dependence of the uniform susceptibility of spin-half quantum antiferromagnets on spatially anisotropic triangular lattices, using high-temperature series expansions. We consider a model with two exchange constants J1 and J2 on a lattice that interpolates between the limits of a square lattice (J1=0), a triangular lattice (J2=J1), and decoupled linear chains (J2=0). In all cases, the susceptibility, which has a Curie-Weiss behavior at high temperatures, rolls over and begins to decrease below a peak temperature Tp. Scaling the exchange constants to get the same peak temperature shows that the susceptibilities for the square lattice and linear chain limits have similar magnitudes near the peak. Maximum deviation arises near the triangular-lattice limit, where frustration leads to much smaller susceptibility and with a flatter temperature dependence. We compare our results to the inorganic materials Cs2CuCl4 and Cs2CuBr4 and to a number of organic molecular crystals. We find that the former (Cs2CuCl4 and Cs2CuBr4) are weakly frustrated and their exchange parameters determined through the temperature dependence of the susceptibility are in agreement with neutron-scattering measurements. In contrast, the organic materials considered are strongly frustrated with exchange parameters near the isotropic triangular-lattice limit.