23 resultados para Heat-Shock Proteins
Resumo:
The purpose of this study was to compare the effects of exercise intensity and exercise-induced muscle damage on changes in anti-inflammatory cytokines and other inflammatory mediators. Nine well-trained male runners completed three different exercise trials on separate occasions: ( 1) level treadmill running at 60% VO2max (moderate-intensity trial) for 60 min; (2) level treadmill running at 85% VO2max (high-intensity trial) for 60 min; (3) downhill treadmill running ( - 10% gradient) at 60% VO2 max (downhill running trial) for 45 min. Blood was sampled before, immediately after and 1 h after exercise. Plasma was analyzed for interleukin-1 receptor antagonist (IL-1ra), IL-4, IL-5, IL-10, IL-12p40, IL-13, monocyte chemotactic protein-1 (MCP-1), prostaglandin E-2, leukotriene B-4 and heat shock protein 70 (HSP70). The plasma concentrations of IL-1ra, IL-12p40, MCP-1 and HSP70 increased significantly (P< 0.05) after all three trials. Plasma prostaglandin E-2 concentration increased significantly after the downhill running and high-intensity trials, while plasma IL-10 concentration increased significantly only after the high-intensity trial. IL-4 and leukotriene B4 did not increase significantly after exercise. Plasma IL-1ra and IL-10 concentrations were significantly higher ( P< 0.05) after the high-intensity trial than after both the moderate-intensity and downhill running trials. Therefore, following exercise up to 1 h duration, exercise intensity appears to have a greater effect on anti-inflammatory cytokine production than exercise-induced muscle damage.
Resumo:
Hyperthermia is teratogenic to human and animal embryos and induces mainly anomalies of the nervous system. However, the teratogenic mechanism is poorly understood. Mammalian embryos are known to switch from anaerobic to aerobic metabolism around the time of neural tube closure. This critical event might be sensitive to hyperthermia. The objective of the present study was to evaluate the ultrastructural changes of the mitochondria of the neuroepithelium (NE) of rat embryos following maternal exposure to hyperthermia. Pregnant rats were heat stressed for an hour on gestation day (GD) 9 and embryos were examined by electron microscopy on GD 10. NE presented extensive apoptosis. Intercellular junctions were weakened and copious cellular debris projected into the ventricle. The mitochondria were of diverse size and shape. Most of them were swollen and had short cristae and electron dense matrix. Hydropic changes were also observed in numerous mitochondria. Lipid-laden mitochondria were found in the apical portions of neuroblasts. The mesenchyme (ME) of heat-treated embryos showed paucity of cells and only as frequent apoptosis as the controls. Their mitochondria also showed changes similar to those of the NE. Additionally extensive lipid accumulation was observed in and in the vicinity of mitochondria, often surrounded by short strands of endoplasmic reticulum. Whereas mitochondrial pathology was associated with profound apoptosis in the NE, growth restriction and lipid accumulation accompanied mitochondrial changes in the ME. The results of this study indicate that the embryonic response to maternal heat shock is tissue-specific and morphologically distinct in this species.
Resumo:
Interest in the relationship between inflammation and oxidative stress has increased dramatically in recent years, not only within the clinical setting but also in the fields of exercise biochemistry and immunology. Inflammation and oxidative stress share a common role in the etiology of a variety Of Chronic diseases. During exercise, inflammation and oxidative stress are linked via muscle metabolism and muscle damage. Because oxidative stress and inflammation have traditionally been associated with fatigue and impaired recovery from exercise, research has focused on nutritional strategies aimed at reducing these effects. In this review, we have evaluated the findings of studies involving antioxidant supplementation on alterations in markers of inflammation (e.g., cytokines, C-reactive protein and cortisol). This review focuses predominantly on the role of reactive oxygen and nitrogen species generated from muscle metabolism and muscle damage during exercise and on the modulatory effects of antioxidant supplements. Furthermore, we have analyzed the influence of factors such as the dose, timing, supplementation period and bioavailability of antioxidant nutrients. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Background Chaperonin 10 (heat shock protein 10, XToll(TM)) has anti-inflammatory properties related to the inhibition of Toll-like receptor signalling pathways. Our aim was to establish whether chaperonin 10 is safe and effective in the treatment of rheumatoid arthritis. Methods in this randomised, double-blind, multicentre study, 23 patients with moderate to severe active rheumatoid arthritis receiving disease-modifying antirheumatic drugs were randomly allocated to three treatment groups receiving intravenous chaperonin 10 twice weekly for 12 weeks at doses of 5 mg (n=8), 7.5 mg (8), or 10 mg (7). The primary outcomes were change in disease activity score (DAS28) and improvement of core disease measures (American College of Rheumatology response score) from baseline to week 12. All analyses were done by intention to treat. This study is registered with the Australian Clinical Trials Registry, number ACTRNO12606000041550. Findings Primary endpoint measures improved from day 14 in all groups and continued to improve to day 84. By end of study, a 20% improvement of core disease measures was seen in six (86%, 95% Cl 43-100), a 50% improvement in four (57%, 14-86), and a 70% improvement in two (29%, 0-57) patients given the highest dose of chaperonin 10. Clinical remission (as defined by a DAS28
Resumo:
The textures of yogurt made from ultra-high temperature (UHT) treated and conventionally treated milks at high total solids were investigated. The yogurt premixes, fortified with low-heat skim milk powder to 16%, 18%, and 20% total solids, were UHT processed at 143 degreesC for 6 s and heated at 85 degreesC for 30 min using the conventional method. The onset of gelation was delayed in the UHT-processed milk compared with conventionally heated milk. During fermentation, the viscosity of yogurt made, from UHT-treated milk at 20% total solids was close to that of yogurt made from conventionally treated milk with 16% total solids. However, after storage for greater than or equal to1 d, the yogurt made from UHT-treated milk had lower viscosity and gel strength than the yogurt made from conventionally treated milk. The solids level had no influence on yogurt culture growth.
Resumo:
The properties of commercial directly and indirectly heated UHT milks, both after heating and during storage at room temperature for 24 weeks, were studied. Thermally induced changes were examined by changes in lactulose, furosine and acid-soluble whey proteins. The results confirmed previous reports that directly heated UHT milks suffer less heat damage than indirectly heated milk. During storage, furosine increased and bovine serum albumin in directly heat-treated milks decreased significantly. The changes in lactulose, alpha-lactalbumin and beta-lactoglobulin were not statistically significant. The data suggest that heat treatment indicators should be measured as soon as possible after processing to avoid any misinterpretations of the intensity of the heat treatment.
Resumo:
Results of the benchmark test are presented of comparing numerical schemes solving shock wave of M-s = 2.38 in nitrogen and argon interacting with a 43 degrees semi-apex angle cone and corresponding experiments. The benchmark test was announced in Shock Waves Vol. 12, No. 4, in which we tried to clarify the effects of viscosity and heat conductivity on shock reflection in conical flows. This paper summarizes results of ten numerical and two experimental applications. State of the art in studies regarding the shock/cone interaction is clarified.
Resumo:
Lift, pitching moment, and thrust/drag on a supersonic combustion ramjet were measured in the T4 free-piston shock tunnel using a three-component stress-wave force balance. The scramjet model was 0.567 m long and weighed approximately 6 kg. Combustion occurred at a nozzle-supply enthalpy of 3.3 MJ/kg and nozzle-supply pressure of 32 MPa at Mach 6.6 for equivalence ratios up to 1.4. The force coefficients varied approximately linearly with equivalence ratio. The location of the center of pressure changed by 10% of the chord of the model over the range of equivalence ratios tested. Lift and pitching-moment coefficients remained constant when the nozzle-supply enthalpy was increased to 4.9 MJ/kg at an equivalence ratio of 0.8, but the thrust coefficient decreased rapidly. When the nozzle-supply pressure was reduced at a nozzle-supply enthalpy of 3.3 MJ/kg and an equivalence ratio of 0.8, the combustion-generated increment of lift and thrust was maintained at 26 MPa, but disappeared at 16 MPa. Measured lift and thrust forces agreed well with calculations made using a simplified force prediction model, but the measured pitching moment substantially exceeded predictions. Choking occurred at nozzle-supply enthalpies of less than 3.0 MJ/kg with an equivalence ratio of 0.8. The tests failed to yield a positive thrust because of the skin-friction drag that accounted for up to 50% of the fuel-off drag.